
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

DESIGN OF A LOAD-BALANCING ARCHITECTURE FOR
PARALLEL FIREWALLS

by

William L. Joyner

March 1999

Thesis Advisor:
Second Reader:

Cynthia Irvine
Geoffrey Xie

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave
blank)

REPORT DATE
March 1999

REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
Design of a Load-Balancing Architecture For Parallel Firewalls

6. AUTHOR(S) William L. Joyner

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Because firewalls can become a potential choke point as network speeds and loads increase, the Navy needs a
cost-effective means of increasing data rate through firewalls by placing several machines in parallel and balancing
the traffic load among them. Current firewall architectures consisting of multiple machines do not balance load
among machines and require that each type of traffic be allocated to a machine dedicated to processing specific
protocols. This situation creates a performance bottleneck.

This thesis proposes a load-balancing firewall architecture to meet the Navy's needs. It first conducts an
architectural analysis of the problem and then presents a high-level system design as a solution. Finally, the thesis
provides a detailed system design, targeted for the BSD/OS operating system. The detailed design
describes the state transitions, data types and databases, functional interfaces, and threads of execution for
a modular layered software architecture.

The result of this thesis is a procedural blueprint for implementation of a firewall architecture, from both
software and hardware perspectives, that should mitigate the performance bottleneck. The software architecture is
easily verifiable due to its modular, layered design; does not affect either the commercial routers or firewall
products; and provides an administrative interface for performance tuning.
14. SUBJECT TERMS

Load balancing, Parallel/distributed processing, Firewalls, Routing
15. NUMBER

PAGES 138
OF

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION OF TfflS PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF
ABSTRACT

Unclassified

20. LIMITATION
ABSTRACT

UL

OF

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

DESIGN OF A LOAD-BALANCING ARCHITECTURE FOR PARALLEL
FIREWALLS

William L. Joyner
Lieutenant, United States Navy

B.S., Virginia Tech, 1989

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1999

Author:

Approved by:

William L. Joyner

rV^Lv c - xrrb>*™-*-
Cynthia Irvine, Thesis Advisor

Geoffrey Xie, Second Reader

4~*~ _; c
Dan Boger,

Department of Electrical and Computer Engineering

m

IV

ABSTRACT

Because firewalls can become a potential choke point as network speeds and loads

increase, the Navy needs a cost-effective means of increasing data rate through firewalls by

placing several machines in parallel and balancing the traffic load among them. Current

firewall architectures consisting of multiple machines do not balance load among machines

and require that each type of traffic be allocated to a machine dedicated to processing

specific protocols. This situation creates a performance bottleneck.

This thesis proposes a load-balancing firewall architecture to meet the Navy's

needs. It first conducts an architectural analysis of the problem and then presents a high-

level system design as a solution. Finally, the thesis provides a detailed system design,

targeted for the BSD/OS operating system. The detailed design describes the state

transitions, data types and databases, functional interfaces, and threads of execution for a

modular layered software architecture.

The result of this thesis is a procedural blueprint for implementation of a firewall

architecture, from both software and hardware perspectives, that should mitigate the

performance bottleneck. The software architecture is easily verifiable due to its modular,

layered design; does not affect either the commercial routers or firewall products; and

provides an administrative interface for performance tuning.

VI

TABLE OF CONTENTS

I. INTRODUCTION : 1

A. BACKGROUND 1

B. PROBLEM STATEMENT 4

C. GOALS OF THIS THESIS 5

H. CHOOSING THE ARCHITECTURE 7

A. BASIC CONCEPTS 7

1. Scheduling 7

2. Load Balancing 9

3. Clustering 11

B. SCHEMA CONSIDERED 13

C. CHOICE OF ARCHITECTURE 18

D. CONFIGURATION ISSUES 22

E. CHOICE OF LOAD BALANCING ALGORITHM 22

ID. SOFTWARE MODULE DESIGN 25

A. FIREWALL 31

1. Load Monitor 32

B.CONTROLLER 35

1. Admin 35

2. Update Server 37

3. LB Router 41

Vll

IV. TEST NETWORK CONFIGURATION 45

V. DISCUSSION AND CONCLUSIONS 47

A. LESSONS LEARNED FROM SOFTWARE DESIGN 47

B. FOLLOW-ON WORK AND FUTURE RESEARCH 48

C. CONCLUSIONS 51

APPENDIX A. SOFTWARE REQUIREMENTS SPECIFICATION 53

APPENDIX B.SOFTWARE DESIGN SPECIFICATION 63

APPENDIX C. A DISCUSSION OF BENCH TESTING 117

LIST OF REFERENCES 119

INITIAL DISTRIBUTION LIST 123

Vlll

LIST OF FIGURES

Figure 1 Current firewall architecture 2

Figure 2 Clustering or DSM scheme 14

FigureS DNS scheme 15

Figure 4 Intermediate routing station scheme 15

Figure 5 Proposed firewall architecture 19

Figure 6 A modular, layered design model 26

Figure 7 Inter-process communications - global view 30

Figure 8 Inter-process communications - detailed view 31

Figure 9 Load Monitor state diagram 32

Figure 10 ADMIN process state diagram 36

Figure 11 Parent Update Server state diagram 38

Figure 12 Child Update Server state diagram 39

Figure 13 LB ROUTER state diagram 42

Figure 14 Test network addressing scheme 45

IX

ACKNOWLEDGEMENTS

I would like to express my thanks to the following people for their part in helping

me to complete this thesis. While some people's roles were bigger than others were, they

all were necessary for me to reach a successful conclusion in my work.

• Dr. Cynthia Irvine, my advisor, whose guidance and patience was invaluable. She

continued introducing me to new ideas through the very end.

• Dr. Geoffrey Xie, for his input on matters of networking.

• Valerie Brooks, for sharing her knowledge of UMX system administration and for

tolerating the problems that I caused her as a student.

• Paul Clarke, Cindy Holden, and Anatacia Cruz-Tokar, for putting up with me in the lab

and for getting me the networking equipment that I needed for the project.

• Ken Lam, for his technical assistance on current firewall configurations being used by

SPAWAR.

XI

Xll

I. INTRODUCTION

With the advent of the 1T-21 [Ref. 1] and Navy Virtual Internet (NVT) [Ref. 2]

initiatives, the United States Navy is moving toward becoming fully connected by computer

networks. Navy policy [Ref. 24] requires that protection mechanisms such as firewalls be

used to prevent unauthorized access to its networks by users on open networks such as the

Internet. The Navy's Space and Naval Warfare Center (SPAWAR) installs and maintains

firewalls at regional network operating centers (NOC) through which most Navy network

traffic flows. Already, the volume of network traffic passing through these NOCs requires

multiple firewall machines to be placed in parallel to keep pace. The current parallel

firewall architecture uses its machines inefficiently, resulting in potential denial of service

for one or more network protocols (e.g. all email or HTTP traffic) even though the volume

of network traffic may be far less than the total capability of the firewall machines.

SPAWAR has found no viable commercial solution to this problem. The Navy needs a cost

effective, load-balancing firewall system for the network operating centers.

A. BACKGROUND

The Navy has NOCs located at its Naval Computer and Telecommunications Area Master

Stations (NCTAMS) to process communications between fleet ships and shore based

networks such as the Defense Message System, the non-classified information packet

routing network (NIPRNET), and the Internet. NOCs are also located at the Pentagon and

major shore commands such as Commander, Naval Air Forces (COMNAVAIR). Future

plans entail NOCs being strategically placed around the world with each NOC being

responsible for routing Navy network traffic to and from a defined geographic area.

/ Internet, \
Firewall

(Fleet)
V NIPRNet) *

■ '
HTTP

1 ■

Router Switch Firewall Switch Router

Email
/
\

Firewall Virus checking/
Intrusion detection

P, Telnet, etc. Fi

Figure 1 Current firewall architecture

Following Navy policy, each NOC has a firewall between it and the Internet or other

open networks to which the NOC may be attached. The SPAWAR Systems Center

Charleston, South Carolina builds and maintains the NOC firewalls using commercial off-

the-shelf (COTS) products. The volume of network traffic passing through the NOC

firewall necessitates placing multiple machines in parallel to cope with the traffic without

affecting service. The current parallel firewall architecture consists of an internal router,

several parallel firewall machines, an external router, and servers for such functions as virus

checking and intrusion detection as shown in Figure 1. Responsibility for connection-

oriented (e.g. TCP) traffic is allocated to the firewall machines by traffic type. For example,

one machine may process only HTTP traffic, another machine may process only SMTP

traffic, and a third machine may process other miscellaneous services such as FTP and

Telnet. Non-connection-oriented traffic is routed using the open shortest path first (OSPF)

protocol.

OSPF is a link-state protocol. With link-state protocols, decisions are made based

on the status of chosen characteristics for each link (i.e. path from one node to its immediate

neighbor in a network). OSPF has some inherent load balancing capability so that non-TCP

traffic would either be distributed in a round robin fashion or go to the firewall machine

currently determined by the protocol to have the lightest load. RFC 2328 [Ref. 3] describes

OSPF in the following way:

OSPF routes IP packets based solely on the destination IP address found in
the IP packet header. ... In a link-state routing protocol, each router
maintains a database describing the [system's] topology. This database is
referred to as the link-state database. Each participating router has an
identical database. Each individual piece of this database is a particular
router's local state (e.g. the router's usable interfaces and reachable
neighbors). The router distributes its local state throughout the [system] by
flooding. All routers run the exact same algorithm, in parallel. From the
link-state database, each router constructs a tree of shortest paths with itself
as root. This shortest-path tree gives the route to each destination in the
[system]. ... When several equal-cost routes to a destination exist, traffic is
distributed equally among them. The cost of a route is described by a single
dimensionless metric. ... This cost is configurable by the system
administrator. The lower the cost, the more likely the interface is to be used
to forward data traffic.

The current configuration uses identical firewall machines so the administrator can input an

arbitrary cost as long as the cost is the same for each path. If a heterogeneous mix of

firewall machines is used, then the system administrator must input costs indicating the

performance capability of each machine relative to the other machines. Since the OSPF

protocol routes packets based solely on IP address, it is inappropriate for connection-

oriented traffic. The reason is that once a connection is established through the firewall, all

subsequent packets for that connection must go through the same machine. OSPF may send

packets from the same connection to any of the firewall machines.

Under the current architecture, a flood of traffic of one protocol could cause the

firewall machine processing that protocol to become overloaded. Since that machine is the

only one designated to process that protocol, the other machines would provide no help

even though they may be very lightly loaded. The result is essentially a denial of service for

one protocol even though the total capacity of the firewall far exceeds that of the current

traffic load. An example scenario in which one traffic type composes most network traffic

is a high volume of email traffic being sent during crisis situations or major exercises

involving several ships. A more common example would be surges in email traffic seen

during certain parts of the typical workday or workweek for shore commands.

SPAWAR's expressed needs are for a firewall architecture with the following

characteristics:

• Balances network load (both connection-oriented and non-connection-oriented)

across all machines

• COTS-based solution

• total capacity of 100 Mbps now with capability for greater throughput in the

future

Network traffic, both connection-oriented and non-connection-oriented, should be

balanced among the firewall machines according to each machine's processing capability

and current status. This capability will allow each machine to process all types of traffic.

While OSPF provides a solution for connectionless traffic, a method for balancing

connection-oriented traffic must be devised.

The architecture should be based on COTS equipment to minimize cost and allow

for rapid, easy equipment upgrades as technology advances. The Navy is moving away

from specialized development wherever practical because of the high cost, effort involved

in managing development programs, difficulty keeping up with technology advances, and

cost/logistics of creating a training program to accompany the specialized equipment.

The architecture must currently support 100Mbps throughput to keep pace with Fast

Ethernet networks. As ATM or Gigabit Ethernet networks are deployed in the Navy, the

throughput requirements for the firewall will obviously increase. So, the architecture

should allow for upgrade to the higher speed networks.

B. PROBLEM STATEMENT

SPAWAR has found no viable commercial solution to meet its needs for a load-

balancing firewall. Commercial products are known to meet some requirements but all

arguably have shortfalls. Problems seen with commercial solutions include 1) not balancing

connection-oriented traffic, 2) balancing connection-oriented traffic using a weak balancing

method (e.g. using the number of connections to a given machine as the metric of load), and

3) having a high cost per component.

C. GOALS OF THIS THESIS

This thesis proposes an architecture that meets SPAWAR's needs for a cost-

effective, load-balancing firewall. It also takes into account good security practices,

modular design for scalability, and robustness of design. The architecture has the following

characteristics:

1. support for a set of heterogeneous machines running firewall software

2. firewall product independence

3. load balancing among the parallel machines that accounts for each machine's

current load and its processing capability

4. load balancing for both connection-oriented (i.e. TCP) and connectionless

network traffic

5. robustness to account for a firewall machine malfunctioning

6. scalability to allow greater firewall throughput by adding more machines in

parallel

7. commonly used COTS hardware and software products for all machines

involved in the architecture

8. minimal cost addition to the current firewall architecture

9. minimal effect on configuration and management of the system

H. CHOOSING THE ARCHITECTURE

A. BASIC CONCEPTS

1. Scheduling

Much work has been done in the areas of scheduling and load balancing in

distributed and parallel systems. Distributed/parallel systems are sets of autonomous

computers connected by a communications network. The development of scheduling

algorithms has provided a strong means of improving performance in these systems [Refs.

4, 5]. The object of scheduling is to meet most efficiently the task processing requirements

set forth by the owner of a particular system. Some example criteria are that the maximum

number of tasks be completed in the least amount of time, that no task is delayed in

processing more than a set amount of time, and that higher priority tasks are completed

before lower priority tasks.

Optimal scheduling in the general case is known to be a NP complete problem [Ref.

6]. As a result, research focuses on finding optimal or near optimal solutions for subsets of

the general case. That is, given particular types of tasks about which some information is

known, researchers develop scheduling methods for those task types. The research covers

numerous approaches to scheduling. Many of these approaches involve matching the best

scheduling algorithm with the appropriate system architecture given a listing of the system

requirements and the types of tasks the system is intended to perform. Architectures of

interest range from a single-processor machine on which all tasks run to a widely dispersed

network of heterogeneous computers connected in a complex configuration.

Scheduling research covers static versus dynamic, preemptive versus non-

preemptive, and adaptive versus non-adaptive scheduling [Ref. 6]. Static scheduling

requires having, at compile time, the complete set of tasks to be processed so the required

runtime parameters (e.g. execution time and communication delays) and computer

resources (e.g. processors, memory, and input/output devices) for each task are known

before any scheduling occurs. Having this information allows an optimal schedule to be

found for the tasks, because the solution is for a specific case vice the general case.

However, static scheduling offers no flexibility for changing or adding tasks without

recompiling the entire algorithm.

Dynamic scheduling assumes no compile-time knowledge about runtime parameters

of tasks. So, tasks may be added or changed after processing has begun. An advantage of

dynamic scheduling is that it offers the flexibility needed in an environment with changing

tasks. A disadvantage is that the scheduling is more difficult and brings processing

overhead not required in static scheduling. Each time the list of tasks changes, the

scheduler must revise its schedule to provide a "best fit" arrangement for processing tasks

with the available resources. A load-balancing firewall requires dynamic scheduling since

each new connection through the firewall is a new task to be completed and the firewall has

no knowledge of the amount of data accompanying each connection.

Non-preemptive scheduling does not allow a task to be interrupted once it has begun

execution. Once a task has a processor and other resources it needs to execute, it pins to

completion using those resources. An advantage is that the scheduler can forget about a

task once the task has begun execution, making the scheduling problem less complex

compared to preemptive scheduling. It schedules the remaining tasks in its list based on

their known parameters and the expected completion time of the currently running tasks.

Because of the time-out features of connection-oriented transport layer protocols (e.g. TCP),

a parallel firewall will generally use non-preemptive scheduling.

Preemptive scheduling allows the processor and other resources to be taken away

from a task with the understanding that the task will regain its resources and proceed to

completion later. An advantage of preemptive scheduling is that it provides more flexibility

in pursuing an optimal schedule according to the goals of the scheduler. A disadvantage is

that it is more complex, and carries more processing overhead, than non-preemptive

scheduling because the scheduler must consider whether running tasks should be stopped

temporarily or moved to other processors. A parallel firewall may use preemptive

scheduling if it is designed to move connections between machines as part of a load-

balancing scheme.

In adaptive scheduling, the scheduler changes its scheduling behavior based on

current behavior of the system, possibly in response to previous decisions made by the

scheduler. For example, a scheduler may use a scheduling algorithm suited for heavy loads

when it recognizes a heavy load on a system and it may use a different algorithm under

lighter load. Non-adaptive scheduling may also use feedback from the system, but the

scheduler does not change its behavior in response to the feedback. An advantage of

adaptive scheduling is that it may provide more efficient scheduling over a wider range of

system conditions. A disadvantage is greater complexity in the scheduling algorithm. Non-

adaptive scheduling may provide less efficiency considering the whole of system

conditions, but is generally less complex. A parallel firewall may use either adaptive or

non-adaptive scheduling depending on the requirements of the design.

Some scheduling algorithms, such as a round-robin algorithm, work with no

knowledge of the machines or processors for which they schedule tasks. Other algorithms,

regardless of whether they are adaptive or not, use various types of system information to

schedule tasks. The algorithms may use such information as the pre-determined maximum

processing capability of machines or processors in the system, the progress of tasks being

executed, historical information about runtimes of tasks on various machines, and network

traffic load. In general, algorithms that use system information in their scheduling provide

more robust and responsive service than those that use no system information. These

algorithms are said to be smarter algorithms.

2. Load Balancing

Load balancing attempts to maximize throughput of a distributed system processes

tasks by trying to equalize load among all computers in the system according to some pre-

defined set of rules. It uses the concepts developed for scheduling algorithms as its basis.

The term load balancing as used in this paper would more accurately be called load

distribution. Load-distributing algorithms can be further classified as being load-sharing or

load-balancing [Ref. 7]. Load-sharing algorithms attempt to maximize the rate at which a

distributed system processes jobs by trying to avoid situations in which some computer is

idle while another has multiple jobs. Load-balancing algorithms share the same goal as

load-sharing algorithms but they go a step further; they attempt to equalize the loads on all

computers vice looking only for computers with no task while others have multiple tasks.

Load balancing is typically dynamic in that it uses system state information to

schedule new tasks or move tasks between processors during runtime. Tasks are initially

scheduled using some dynamic scheduling algorithm. The load-balancing algorithm

monitors system information and may move tasks to different machines as the system state

changes.

A dynamic load-balancing algorithm typically has four components: a transfer

policy, a selection policy, a location policy, and an information policy [Ref. 7]. The transfer

policy determines when a node is loaded to the point that a task should be moved elsewhere,

usually by defining some threshold load value. A node exceeding the threshold is called a

sender node. The selection policy determines which task should be moved from a sender

node to another node. The location policy determines a suitable receiver location to accept

the task transfer. If no suitable receiver is found then the task remains at the sender node.

The information policy determines what system information will be used in making load-

balancing decisions.

As an example, consider an information policy that uses a pre-defined measure of

the processing capability of each machine, the expected runtime of tasks on some

"standard" machine, and a measure of the expected time to transfer a task from one machine

to another. The selection policy may be that the algorithm selects for transfer the task with

the shortest expected runtime that will drop the sender machine below its transfer threshold.

The location policy may be that the expected runtime on a receiver machine plus the

expected time to transfer the task between machines must show an expected speedup in task

completion without causing the receiver machine to exceed its transfer threshold. If a

machine becomes loaded beyond a threshold determined by the transfer policy, the

10

algorithm chooses a task for transfer and looks for a machine to which a task can be

transferred. If it finds a satisfactory receiver machine then it will transfer the task.

One question that arises with dynamic, adaptive load sharing schemes is how much

system information to use. Research has shown that using very small amounts of system

information in simple ways yields dramatic performance improvement relative to the no

load balancing case [Ref. 8]. The performance is close to that expected from much more

complex schemes but with much less overhead due to data collection and communication

delay.

Much research has been done in dynamic, adaptive scheduling for heterogeneous

distributed systems. Some of these research projects are the V-System [Ref. 9], Sprite [Ref.

10], Condor [Ref. 11], Stealth [Ref. 12], Gammon [Ref. 13], MSHN [Ref. 14], and Globus

[Ref. 15]. These types of adaptive systems typically allocate resources to tasks based on the

information known about the tasks. For example, the particular task or a similar task may

have run on the system before, so past performance data may be collected in a task history

file. Another possibility is that a task new to the system may have had analysis performed

on it before scheduling so it includes prediction information to be used for scheduling. The

dynamic scheduling systems also monitor the progress of scheduled tasks and perform

checks to determine whether tasks should be dynamically rescheduled (e.g. moved to

another machine) to finish more quickly or efficiently as various resources in the system

become available. Some of these systems also monitor resources and dynamically adapt to

changing conditions. So, these types of projects blur any line that may exist between

research in scheduling and research in load balancing.

3. Clustering

Computers in a distributed system must have some way of acting together as a

single virtual machine. This is sometimes called clustering. Three approaches, all areas of

active research, enable a set of computers to be clustered: distributed operating systems,

resource management systems (RMS), and distributed computing environments (DCE).

Distributed operating systems make the set of computers act as if they are actually hardware

11

in one machine. That is, distributed operating systems micro-manage each machine's

resources (memory, I/O devices, etc.) rather than each machine running an independent

operating system. They accomplish this job by having each machine run a copy of the

distributed operating system software. The machines' operating systems work together as

the overall distributed operating system. So, one operating system controls all of the

machines just as in a single computer. Distributed operating systems are rarely used in the

United States but are used to some extent in Europe.

RMSs allow each machine to be managed by its own, independent operating system.

A RMS has some central elements such as a scheduler, a task monitor, and a database of

historical information, and a set of machines for performing tasks. The scheduler allocates

individual or groups of machines to tasks. The machines then work on the tasking,

reporting their progress to the monitor. The monitor or the scheduler makes decisions about

reallocating resources if necessary. RMS examples are Condor, MSHN, and Globus.

DCEs accomplish the creation of virtual machines by use of libraries or

programming language support. In DCEs, each computer has the libraries or language

support modules necessary to allow machines to work together seamlessly as a virtual

machine. These libraries and modules provide a coordinated means of communication

between computers in the DCE while the computers execute programs written using them.

DCE examples are Linda [Ref. 16], PVM [Ref. 17], and MPI [Ref. 18].

Another area of research is the use of distributed shared memory (DSM) schemes to

create clusters of computers. In DSM schemes, each computer in a cluster is controlled by

its native operating system but it runs an application that maps the machine's memory into a

larger, shared memory address space. This mapping means that the virtual machine's

contiguous memory spans the memory of all the machines in the cluster. As a simple

example, a three-machine cluster with 32MB of memory in each machine would enable the

creation of a virtual machine with 96MB of memory. Each machine's memory address

space goes from 0 to 32M but from the perspective of the virtual machine, machine one has

memory locations 0-32M, machine two has 32M-64M, and machine three has 64M-96M.

12

All applications run on top of the DSM mapping. So, an application running on one

machine may have its data located in the memory of any of the machines.

Any of these clustering techniques could be used for a load-balancing firewall

though some may be far more difficult to implement than others. Another option was to use

concepts from more than one technique to create a solution to the problem at hand.

B. SCHEMA CONSIDERED

Several options were available for developing a load-balancing system architecture

for parallel firewall machines. These options included the following ideas:

• Modify the source code in the routers to make them balance connection-oriented

load and let OSPF balance connectionless traffic load. Since all network traffic

between the protected enclave and the outside world passes through the routers

and a router's normal tasking is to make routing decisions for packets, the

routers are a logical location for load balancing to occur. The routers could

distribute among the various firewall machines all new TCP connections

destined for the firewall. They could then route subsequent packets associated

with those connections to the appropriate machine. They could record the

mediating firewall machine's address for new connections from the firewall so

they could route return traffic to the same machine. The routers could use the

existing capability of OSPF to distribute connectionless traffic or they could use

the decision process used for new TCP connections. By modifying the router

code, the physical network could look just as it does in Figure 1.

• Create a firewall cluster using known clustering techniques or distributed shared

memory across the machines so all firewalls know the state of every connection

through the cluster. Using this method, the firewall machines would use a

separate network to communicate among themselves as shown in Figure 2. The

firewall machines could use this network either to exchange information on the

state of every connection through the firewall or to facilitate quick access to

13

memory in a shared memory scheme that was physically located on another

firewall machine, depending on the clustering technique chosen.

Use load-balancing Domain Name Servers (DNS) to distribute new connections

and connectionless traffic to the various firewall machines. Figure 3 shows both

internal and external servers in the firewall architecture. Whenever a request is

made from the outside world for the address of the protected enclave's domain,

the external DNS answers with the address of the firewall machine that should

receive the next portion of network traffic. Clients in the protected enclave must

ask the internal DNS for the address of the gateway to the outside world. The

DNS responds with the address of the firewall machine that should receive the

next portion of network traffic.

Use intermediate load-balancing machines between the routers and the firewalls,

as shown in Figure 4, to distribute traffic among the firewall machines. The

load-balancing stations balance network traffic load destined for the firewall;

they simply pass traffic transiting from the firewall with no action on their part.

/ Internet, \
Firewall

(Fleet)
\. NIPRNet) i

h

'
>

* \ 1 •

Router Switch « > Firewall
\

Switch Router * \ *
i

*

/

\
atanet

Firewall Anti-virus/
Intrusion detection

— . — Message
Dassinff net

Figure 2 Clustering or DSM scheme

14

DNS (^FleeT) f Internet, \
Firewall \NIPRNet) i

i' x,i \ '

Router Switch Firewall ► Switch Router
/

\

DNS Firewall Anti-virus/
Intrusion detection

Figure 3 DNS scheme

/ Internet, \
\NIPRNet/ y Firewall

(^Heet^)

' ' i '

Router 4 ►
LB

station
4 ► Firewall *—> LB

station
«- -* Router

' '

Firewall Anti-virus/
Intrusion detection

Figure 4 Intermediate routing station scheme

Given that the routers used in the firewall network are proprietary, modifying the source

code was eliminated as an option. While the most convenient method of balancing firewall

load would be via the routers, modifying the source code would nullify any software

warrantee or maintenance contract unless the specialized load-balancing software was

developed by the router manufacturer, a time consuming and costly venture.

Creating a firewall cluster using a DSM scheme would be an elegant solution from

the computer science viewpoint. Using this scheme, the routers would need to use only

15

OSPF to balance load between individual firewall machines. Another advantage is that

OSPF could provide fine grain load balancing in that it could balance load almost on a per

packet basis (as opposed to a per connection basis), although this task might require

modifiying the OSPF implementation used.

However, the DSM option was eliminated because of potential serialization

problems and lack of compatibility between DSM schemes and TIS Gauntlet, SPAWAR's

current firewall product of choice. The concern with serialization stems from the fact that

Gauntlet uses proxy servers. Using proxies, connections through the firewall are in two

parts: a connection between the protected user and the firewall proxy, and a connection

between the proxy and the outside user. The proxy acts as a middle-man ensuring isolation

between the two connections. The potential serialization problem in the DSM scheme is

that the inner router might send consecutive packets of an outbound TCP connection to

different firewall machines. The state of the proxy TCP connection between the firewall

and the outside destination would be kept in shared memory. If a firewall machine

receiving a later TCP packet in a connection processed the packet before a machine

receiving an earlier packet, then the packets between the firewall and destination would be

numbered incorrectly, causing problems at the destination.

It may be possible to avoid the serialization problem by recording additional

correlation data in the shared memory, but the concern regarding compatibility between

Gauntlet and DSM schemes becomes an issue. In general, the compatibility concern is that

Gauntlet might not be able to be run on top of a DSM scheme because Gauntlet provides no

programming interfaces that could be used to access it.

Using the researched RMSs for a firewall cluster was eliminated as an option.

RMSs are generally designed for use with relatively long tasks that are controlled wholly

within the cluster. However, a firewall cluster provides proxy services or stateful inspection

(if using a product such as Checkpoint's Firewall-1) for network traffic that has both origin

and destination outside the cluster. The cluster has no control over the length or status of

each network connection between endpoints. Thus, the tasks are not controlled within the

cluster. Also, network traffic is characteristically frequent and short term, not the longer

16

term tasks for which RMSs are designed. So, not only would the advantages of the

powerful load balancing techniques developed for use in an RMS not be realized in the

firewall cluster, but these very techniques carry processing overhead that may hurt

performance of the firewall cluster.

Using an existing DCE was eliminated as an option. The individual firewall

machines can work independently; their only requirement is that the traffic be routed to

them correctly. A DCE typically has a master station that partitions a task, hands it out to

constituent machines, and collects results to construct the full solution to a computational

task. So, the DCE did not seem to fit the problem. Furthermore, it is expected that a

streamlined algorithm written specifically for the firewall cluster would not carry as much

overhead as a DCE.

Using a load-balancing DNS seemed to be a viable option for the solution. Use of

the DNS allows each firewall machine to act independently. The DNS is involved only in

providing an IP address for the appropriate firewall machine. The idea is that any new

connection through the parallel firewall would need an address for a firewall machine.

Load balancing can be accomplished by having the DNS provide the firewall machines'

addresses to domain name requests such that the load is balanced among the machines.

Once a connection is established, all traffic for that connection goes through the same

machine without intervention by the DNS.

A DNS scheme would be appropriate for traffic inbound to the protected enclave

but not for outbound traffic. The problem for outbound traffic is that the parallel firewall

should be transparent to internal clients. However, having multiple firewalls requires both a

load-balancing DNS to provide firewall addresses and a normal internal DNS to translate

domain names to IP addresses.

DNS uses a resolver on each client machine and one to three servers to process

domain name requests [Ref. 25]. Resolvers act on behalf of client programs,

communicating with servers to translate domain names to IP addresses. Where multiple

servers are used there is a master server and backup servers. If the master server does

respond then resolvers try the backup servers. Regardless of the number of servers,

17

resolvers ask one question (i.e. what is the address for this domain name?) and get an

answer to that question. If the destination IP address is outside of the protected enclave,

then the client sends the packets to a gateway machine to the outside world.

Clients are normally configured so that they always know the identity of their

gateway. Requiring clients to ask a load-balancing DNS for the gateway address

necessitates reconfiguring every internal client to use the two DNS scheme vice having the

parallel firewall solution solve the problem, an undue burden considering the vast number

of clients on ships in each theatre. Another weakness with the DNS scheme is that it

provides relatively coarse grain load balancing since it balances load by use of connections

rather than on a per packet basis as with a DSM scheme.

Using intermediate routing stations between the routers and the parallel firewall also

seemed to provide a viable solution. This scheme allows the needed load-balancing

functionality that cannot be added to the commercial router to be added to the network.

These routing stations do not replace the routers and all of the functionality that they

provide, but rather they simply provide the specific functions needed for load balancing.

Each intermediate station performs the same type of load-balancing function as the DNS

described in the previous option. Under this scheme the intermediate station decides where

to send a new connection. It then routes all traffic for that connection through the same

machine with no further decision required on its part. The weaknesses in using an

intermediate station are the coarse granularity discussed for the DNS and the fact that the

scheme requires all traffic to pass through another machine. Another machine in series

means another potential failure or choke point.

C. CHOICE OF ARCHITECTURE

Given the previously stated constraints and discussion of options, the architecture

shown in Figure 5 seemed a best fit for the solution. Figure 5 shows a load-balancing DNS

providing load-balancing services for inbound traffic, a set of independent firewall

machines (i.e. each controlled by its native operating system and running its own firewall

18

software), and an intermediate controller providing load-balancing services for outbound

traffic. The controller is discussed in the previous section as an intermediate routing station.

The DNS is the least intrusive method of load balancing because it has minimal

impact on traffic throughput for the parallel firewall. Setting a short time in the time-to-live

(lTJL) field for domain name responses should ensure that machines outside the protected

enclave almost always have to query the DNS before talking to one of the firewall

machines. The intermediate controller providing load-balancing services for outbound

traffic allows us to encapsulate the parallel firewall within the internal and external routers.

That is, the load-balancing firewall scheme is transparent to all machines that are not

between the two routers.

Fleet

Virus checking/
Intrusion detection

Firewall

Switch *

s—'
Firewall

DNS Firewall

Router

Switch « » Controller

, Control net

. Data net

Figure 5 Proposed firewall architecture

Security concerns govern the way the hardware components of the firewall scheme

are connected and the way the components should be configured. Integrity, authenticity,

and availability are the computer security concepts with which we are concerned here. The

policies for these concepts are as follows:

19

1. The specific implementation and operation of the architecture should be

transparent to users.

2. Unauthorized users should not be able to spoof control signals to affect the

operation of the architecture.

3. Data congestion should not prevent control signals from reaching the firewall

components.

4. A firewall machine must mediate all access from one side of the firewall

architecture to the other.

The first policy deals with system integrity. The structure, operation, and internal

communications of the architecture should not affect the way outsiders (i.e. machines

outside the routers) communicate through the firewall. Likewise, outsiders have no

legitimate reason to communicate with specific components of the architecture. The second

policy also pertains to integrity, authenticity, and availability. Outsiders should not be able

to insert fake control signals by impersonating a component of the architecture. So, fake

control signals should not be able to compromise the integrity of the architecture or

availability of the architecture's services. The third policy addresses availability. Control

signals should be able to reach the components regardless of the state of the data path. This

arrangement allows problems to be corrected via the control path. The last policy addresses

completeness so that all communication between the protected enclave and the outside

world must pass through a firewall machine.

Figure 5 shows separate data and control networks. Data and control signals travel

on physically separate media accessed via separate interfaces so that the signals do not

compete for time on a common network. From an availability standpoint, the following

advantages arise:

• Congestion or other problems on the data path do not prevent control signals

from reaching the various components.

• Control signals between components do not add to the amount of traffic on a

common network.

20

• Remote administration is supported because the state of the data path does not

affect the ability of an administrator to reach the components.

• Control signals should not be able to be spoofed via the data path.

From a system integrity standpoint, physically separate networks and properly

configured components prevent cross-communication between data and control networks.

They also hide both control signals and the existence of some components in the

architecture from the outside world. Only the controller is hidden initially; other

components, such as an administrator station or remote access station, added to the control

net later would also be hidden. Proper configuration of the routers prevents unintended

signals from passing outside the routers, hiding the specific internal implementation and

operation and thus contributing to the integrity of the architecture.

From an authenticity standpoint, only legitimate firewall components should be able

to communicate on the control network. Additional authenticity safeguards would need to

come from the software controlling the architecture.

This line of reasoning does not imply any measure of assurance for integrity or

authenticity policy enforcement should the underlying platforms be compromised.

However, proper configuration of the firewall components provides some amount of logical

separation between the data and control networks. Since control signals use physically

separate media from data signals, the operating system and software on each component

determine the level of assurance for integrity and authenticity.

The DNS is not connected to the control network. This design decision avoids a

physical path around the firewall machines, enforcing the completeness policy. So, any

control signals to the DNS must reach it via the data network. Proper configuration of the

routers prevents control signals to the DNS from reaching the outside world. Another

option is to use a one-way fiber arrangement so that the DNS receives but cannot transmit

signals on the control network. However, the one-way fiber would provide an outbound

path around the firewall machines, a risk that must be weighed against potential benefits in

firewall architecture performance.

21

D. CONFIGURATION ISSUES

Several configuration issues arise when considering the security concerns mentioned

in the preceding section. Issues are discussed here by hardware component, but no specific

implementation details are provided because they may differ by manufacturer.

The routers should be configured to block all traffic addressed specifically to or

from the controller. The controller may communicate with the DNS but spoofed

communications from the controller will be prevented. One result is that the internal router

must be the gateway addressed by internal clients. The internal router should block all

communication with the DNS and the external router should block all traffic addressed to

the DNS other than domain name requests.

The operating systems for all machines in the architecture should be in a stripped

down configuration. Protocols such as Telnet and FTP should not be installed. Commands

such as rlogin and rsh should be disabled. The idea is to create a machine upon which is

installed only those components of the operating system required for the machine to do its

job. The machine should be difficult to log into without access to its control terminal.

Lastly, the machines should run only the firewall and control programs necessary for proper

operation of the architecture.

The DNS should have only one network card unless a one-way fiber is used to

connect it to the control net. As with the controller, the DNS should have minimum

operating system components installed and should be difficult to log into without access to

its control terminal. The DNS should accept control signals on the data net only from the

controller. Should one-way fiber be used for control net connection then no control signals

would be accepted from the data net; control signals would come from the control net.

E. CHOICE OF LOAD BALANCING ALGORITHM
_/

Dynamic, non-preemptive, non-adaptive scheduling seemed appropriate for the

load-balancing firewall scheme. The lack of a predetermined, finite task set dictates the use

of dynamic scheduling. Once a firewall machine mediates a TCP connection through the

22

firewall, then either all subsequent TCP traffic associated with that connection must go

through that machine or all machines in the firewall must know the state of the connection

at any given time. The latter method requires a tremendous amount of message passing

between firewall machines. Also, the lack of interfaces to Gauntlet makes this option

undesirable.

Balancing load by directing new connections to the appropriate machine and routing

all subsequent traffic for that connection to the same machine solves the problem of

processing connection-oriented network traffic. The method is non-preemptive because a

task (i.e. connection) cannot be moved between machines once it has been begun.

Connectionless traffic may be distributed by sending it to the firewall machine that is

scheduled to receive the next connection. These methods work well for both the DNS and

the controller.

Adaptive scheduling does not appear to be needed in the prototype design so non-

adaptive scheduling is used in this thesis for its simplicity. Adaptive scheduling may be

useful should bench testing of firewall machines show a significant difference in processing

times for various protocols. In that case, an additional machine, attached to a hub placed in

the data network between the interior switch and the interior router, would be warranted.

The machine would analyze network traffic for its composition, by protocol, and would

provide feedback to the controller. The controller would use this information to adapt its

scheduling behavior accordingly.

A statistical distribution algorithm was chosen for scheduling in the controller. The

controller can distribute new connections based on the current load and predetermined

processing capabilities of each firewall machine. A statistical distribution algorithm was

also chosen for scheduling in the DNS. However, control signals are not available to the

DNS without using the data network for control communications. So, new connections are

distributed to each firewall machine according only to its predetermined processing

capability. Using a one-way fiber arrangement, load updates would be available to the DNS

via the control network so the distribution algorithm used in the controller could also be

used in the DNS.

23

24

in. SOFTWARE MODULE DESIGN

This chapter presents the software design for the proposed load-balancing

architecture. It first discusses general decisions about the architecture's software and then

discusses the software on a per-component basis. Appendix A describes the requirements

for the software. Appendix B provides a detailed explanation of the data types, modules,

and functions involved in the design. The software is designed for the BSD/OS operating

system produced by BSD! It supports IPv4 protocol and Ethernet hardware format

addresses.

The general design philosophy for the software is that of modularity and layering as

prescribed by Parnas [Ref. 19] and Dijkstra [Ref. 20]. Figure 6 illustrates a modular,

layered model. Functional responsibility determines the formation of modules. The

modules are arranged in hierarchical levels, each level representing a different level of

dependency. Figure 6 shows arrows from higher to lower modules in the overall structure.

The arrows represent function calls from higher levels of abstraction to more specific, lower

abstraction modules to perform tasks. Having the arrows going always downward creates a

partial order among the modules (i.e. there is no potential for loops in the design). A

partially ordered, layered, modular design aids verifiability and ease of understanding of the

design.

Stevens's UNIX Network Programming, Vol. 1 [Ref. 21] was used extensively

during the design and programming phases of this software. A review of UNIX system data

structures and sockets is recommended for those readers not famüiar with the subject.

When designing a load-balancing system, some basic decisions must be made about

the definition of load on the system, how that load is to be measured, and where it is to be

measured. The question of load seems straightforward; it is the amount of network traffic a

machine is processing, measured in the unit of choice (e.g. packets per second or bytes per

second).

25

Module 1

Module 2

Module 3 Module 4

w 1 ' V

Module 5 Module 6 Module 7

Figure 6 A modular, layered design model

Determining load is a more difficult problem. Any number of metrics can be used

for determining load on a firewall machine. For example, the load could be determined by

measuring the number of packets or bytes of data coming to a machine on each of its

network connections. Other possibilities include using the number of TCP connections

through a firewall to estimate load and using the percent usage of the firewall's CPU to

determine its load.

Once the metric is decided, the question of how best to estimate load using that

metric arises. One has the option of monitoring the metric continuously, sampling it

periodically, or determining it by a single snapshot. The options are listed in decreasing

order of both processing overhead and accuracy.

Deciding where in the system to monitor the load metric is the last question.

Options include having each machine perform its own monitoring, having one component

do the monitoring for all components in addition to its own tasking, and adding a new

component to the system to perform load monitoring. Factors such as cost, processing

26

overhead, and the chosen metric itself affect which method of monitoring is appropriate for

a given situation.

The metric and monitoring technique chosen for a load-balancing system should 1)

provide an acceptable level of accuracy in measuring load and 2) have an acceptable cost in

processing overhead and communication latency associated with measuring the metric and

sending it to the appropriate place for use in balancing load. These requirements are

somewhat subjective in nature. Judgement calls must be made as to what is acceptable. In

the case of a firewall, the metric and its measurement should not significantly affect the data

throughput of the firewall architecture.

The following metrics for measuring how much network traffic a firewall machine

is processing were considered for the proposed architecture:

• Measure the number of connections sent to each firewall machine. The

measurement could be done by each firewall machine or by the controller and

DNS.

• Measure bytes of data sent to each firewall machine. This measurement could

be done by the controller and load-balancing DNS machines, by each firewall

machine, or by a new component added to the system for this specific purpose.

• Measure the receive queue for each firewall machine. This measurement would

need to be taken by the firewall machines.

Measuring load by monitoring the number of connections to each firewall machine

was eliminated as an option. This metric would seem to cost relatively little processing

overhead. However, it was eliminated because it falls short in providing an accurate

measure of the amount of data being processed by a firewall machine. The reason is that

each TCP connection is simply an open channel for passing data between machines. As

stated in the discussion of the chosen load-balancing algorithm, once a firewall machine

mediates a TCP connection, all traffic associated with that connection must go through the

same machine. But, no knowledge about the amount of data associated with any given TCP

connection is gained simply by knowing that the connection exists. So, knowing only how

many connections a particular firewall machine is mediating provides little information

27

about the actual amount of data that the machine must process. For this metric to be useful,

some way of mapping associated data volume to connections must be created. The

transport layer protocols in use today (TCP and UDP) provide no such mapping.

Measuring the amount of data, in bytes, sent to each machine was eliminated as a

complete solution for three reasons. First, the measurement is one that should be done

continuously. Having the controller or firewall machines perform the measurement would

consume processor cycles and would degrade firewall throughput. Second, the DNS may

be able to perform the measurements but the information would benefit only the DNS since

it could not transmit on the control network. The DNS could send load updates to the

controller via the data network but sending control signals on the data network was

discussed previously as undesirable. Third, adding a new component to the architecture

solely to measure network traffic sent to each firewall machine would add unnecessary cost

and complexity to the architecture.

Note, however, that having the DNS machine monitor inbound network traffic in

promiscuous mode may offer a partial solution. The DNS would determine, for its own use

in its load-balancing algorithm, the amount of data going to each firewall machine. This

scenario would allow the DNS to base its load balancing on both known capabilities and

current load of the firewall machines without the need for a one-way fiber arrangement.

Testing this option to determine whether the monitoring degrades the DNS's performance is

left to future work.

The metric chosen for the proposed architecture is the length of the receive queue.

The receive queue contains traffic awaiting processing and located in a firewall's receive

buffer. Queue length indicates the amount of work the machine has ahead of it. Knowing

this information, together with the known processing capability of the machine (determined

by bench testing - see Appendix C), provides an indication of how busy the machine is. It

also accounts for both inbound and outbound traffic while other metrics may account for

traffic in only one direction. Having each firewall machine determine its own load

increases the total work performed at each machine. However, queue length measurement

may be performed periodically rather than continuously. This choice mitigates the

28

processing overhead imposed by the sampling system and provides an indication of load

that should approximate that of continuous monitoring. How close the sampled estimate is

to the results of continuous monitoring is a function of sampling rate and network traffic

patterns. The higher the sampling rate, the better the estimate but the more processing

overhead that is introduced. Wildly fluctuating network data volumes could degrade the

sampling method's accuracy.

As noted earlier, some means of mapping load to connections is needed before the

existence of a connection has significant meaning. Recording queue length per TCP

connection using the UNIX netstat utility provides a means of mapping load to TCP

connections. Knowing the historical data volume associated with a particular connection

allows a load-balancing algorithm to use an expected load for that connection in its

calculations, even if there is no data passing through the connection at the time of the

calculations. Using the greater of current receive queue length and a historical, weighted

average of queue length associated with each connection accounts for two special cases.

One case is where a connection has a history of high data rate but is quiet at the time of the

calculations. By including the weighted average, the algorithm takes into account the

previous, and thus expected, connection data rate. The algorithm assumes that the

connection will become busy again. The other case is where a connection that was quiet has

just been supplied a burst of traffic that must be processed by the firewall. The algorithm

must account for data actually in the firewall's receive buffer.

One may argue that simply monitoring total data volume destined for each firewall

machine, regardless of the associated TCP connection, provides similar information and

saves processing overhead. However, using total data volume to estimate expected load for

a particular firewall machine has inherent error in two areas. First, past connectionless

traffic volume is a poor indication of its future volume. Also, since connectionless traffic

may be sent to any firewall, it is irrelevant to expected load calculations for a particular

machine. Second, past data volume associated with connections that have since closed is

also irrelevant to expected load. Since the connections are closed, no data associated with

those connections will contribute to future load on the firewall machine. The concern is

29

only for load history of connections that exist at the time of the load-balancing algorithm's

calculations. So, the predicted load using total traffic volume to a machine as an indicator

would contain error for both closed TCP connections and connectionless traffic.

Firewall Machines

To interior
router

Data net data
■4 ►

Control net signals
•«—■ — ■►

Figure? Inter-process communications - global view

If system testing shows that using queue length per TCP connection degrades

firewall performance to an unacceptable level, then an alternative method for measuring

load will be to construct a profile of the average load associated with a TCP connection via

statistical sampling. In this case, multiplying the average load per TCP connection by the

number of TCP connections for a given firewall would yield the estimated load for that

firewall. Statistical sampling of data associated with TCP connections could be done by the

firewall machines or the controller. The statistical sampling would have lower processing

overhead, at the cost of a lower level of accuracy, and should yield an acceptable estimate of

load for each firewall machine.

Figures 7 and 8 show the communications that occur between the various processes

in the software design. Figure 7 shows communications paths between the processes on

30

each machine. Figure 8 shows the specific signals and messages being passed on those

communications paths. State diagrams for each process in the software design are provided

in subsequent sections.

A.

A

B

C

D

Hello message

Data net data
< ►

IPC (same machine)
■4 *•

Control net signals
■4 *•

Load
Monitor

Hello reply
—►

Update
Server
(child)

Poll for load update

Load update

Inbound data net traffic

Firewall
Product

LB Router Outbound data net traffic

Signal for disabled record

ADMIN

Signal to terminate
--»

Update Server
(parent) Signal that child terminated

Signal to terminate
LB Router

Signal that child terminated

Signal for disabled record
Update Server

(parent)
Update Server

(chUd) Signal that child terminated

Figure 8 Inter-process communications - detailed view

FIREWALL

The requirements for each firewall machine are 1) to run firewall software, 2) to

monitor load on the machine, and 3) to report the load to the controller. Each firewall

machine's primary task is to run the commercial firewall software chosen for that machine

by the security administrator. This thesis does not discuss firewall software in any detail

because details are vendor specific. Also, the proposed architecture is designed to work

regardless of the firewall product chosen. The firewall software mediates all network traffic

between a protected network and the outside world. The proposed architecture also has

31

each machine run a load monitor that calculates load on the machine and reports it to the

controller periodically.

1. Load Monitor

The load monitor provides the following functions:

• Announces to the controller that the firewall machine is ready to operate

• Periodically samples receive queue length for each open connection and for

connectionless network traffic

• Performs a health check of the firewall process

• Sends load updates to the controller

Response for
fw unknown

Max of w.aN
and current

load recorded

Figure 9 Load Monitor state diagram

Figure 9 shows the state diagram for the load monitor. The load monitor starts upon

execution of file loadmon. It initializes by reading information such as the control network

socket address of the controller and the load monitoring increment from its initialization

32

file. It then opens a TCP socket to the controller on the control network, announces itself as

being ready for data network traffic, and awaits an acknowledgement. Once it receives an

acknowledgement, it begins monitoring load on the firewall machine. The socket is left

open for further communications. If the load monitor receives a message saying that the

firewall machine is unknown to the controller, then it displays an alert to the screen and

continues announcing. The thought here is that the system administrator has started up the

firewall machine prior to entering its record into the controller's firewall and they will add

the record shortly. If it receives a negative acknowledgement, then it displays an alert and

terminates.

The load monitor maintains a database of information on open TCP connections.

Each record in the database consists of source and destination socket addresses as a

connection identifier and a running weighted average of queue length associated with that

connection. Load monitoring involves periodically recording receive queue length for each

TCP connection and checking that the firewall process is processing data (i.e. checks for a

healthy firewall process). Each time the load monitor samples a connection's queue length,

it adds the result to the appropriate entry in the database. As it iterates through the open

connections, it adds new connections to and deletes closed connections from the database.

The load monitor calculates the weighted average using only samples taken since the last

time it sent a load update to the controller. All history is purged between sending a load

update and taking the next load sample.

The monitor determines total queue length by summing the greater of current queue

length and weighted average queue length, since the last update, for each current TCP

connection. In this way, the monitor errs conservatively when reporting load, the benefits of

which were discussed earlier. It then adds the current total queue length for connectionless

traffic to the previous sum. The load monitor's load equations are as follows:

n

Qwa =

X
i=l

i*<li

n*(n+l)/2

33

where q; = queue length of i* sample since the last load update to the controller
n = number of samples
i = i01 sample in chronological order and i = 1 is the oldest sample
Qwa = weighted average queue length

m

L = Qnon-conn + ^^ max^, Qk.wa)
k=l

where m = number of open connections,
k = k* open connection,
qic = current queue length of k01 open connection
Qk.wa = weighted average queue length of k* open connection
Qnon-conn = current queue length of connectionless traffic

The load monitor checks the health of the firewall process using BSD Packet Filter

(BPF), a service provided by the BSD/OS kernel. It uses BPF to verify that the firewall

process is sending out processed traffic, provided there is traffic in the receive buffer to be

processed. If this check fails, then the load monitor checks the process status to determine

whether the firewall process exists or has died. If the firewall's health is satisfactory in the

process status check, then the load monitor records a healthy status. If it is unsatisfactory,

then the load monitor records an unhealthy status. These checks look for the case where the

firewall machine is working but the firewall process has crashed or stalled. If the load

monitor reports that the firewall is malfunctioning and the controller has stopped routing

traffic to the machine, then the load monitor must be halted and restarted when the firewall

process is restarted. This action causes the load monitor to re-announce itself as a

functioning firewall.

When polled for a load update by the controller via the open control network socket,

the load monitor packages the machine's load and firewall process's health information into

a reporting format. It then sends the load update to the controller via the open socket.

34

B. CONTROLLER

The requirements for the controller are as follows:

• Balance network traffic load among the parallel firewall machines

• Provide a user interface for the system administrator

The controller runs on a single processor and provides the following functions:

• Balance outbound network traffic load among the firewall machines by routing

new TCP connections and connectionless traffic to the appropriate machine

• Route network traffic for existing connections to the appropriate machine

• Collect load updates from the firewall load monitors for use in its load-

balancing algorithm

• Remove a firewall machine from the distribution scheme upon indications that

the machine is malfunctioning

• Provide a user interface to the system administrator

The controller software deals only with outbound network traffic. Inbound network

traffic passes through the controller machine via the normal forwarding capability of

BSD/OS. The controller software has several processes running to accomplish its

functions: an administrative process, a load update process, and a load-balancing router

process. The administrative process starts first and spawns the other processes.

1. Admin

The administrative process (ADMIN) starts upon execution of file control. Figure

10 shows the state diagram. ADMIN first initializes by reading an initialization file

containing information such as the socket addresses of the firewall machines and the DNS,

the processing capability of each firewall machine, and the time interval between load

updates. Information about each potential firewall machine is placed in a firewall record in

a firewall database. Operational parameters such as the polling increment are maintained

separately.

35

send/skip

■H Start
r .. \ changes .j function s—M

Figure 10 ADMIN process state diagram

Each firewall record in the firewall database consists of the following information:

• Handle - integer used for referencing the record from outside the database

• Firewall availability: ENABLED = the firewall may be placed in service,

DISABLED = may not be placed in service

• Firewall status: ACTIVE = the firewall is included in load-balancing scheme,

INACTIVE = not included

• Control net socket address - used to obtain load updates

• Processing capability - pre-determined by bench testing

• Latest load update - used by the load-balancing algorithm

• Data net IPv4 address - used to obtain Ethernet address

• Data net Ethernet hardware address - used by LB ROUTER to forward traffic

• Number of consecutive poor health reports and non-responses to polling - used

to determine whether a firewall is malfunctioning and should be removed from

the load-balancing scheme

• Distribution parameter - used by LB ROUTER to distribute new connections

The controller software design is such that data fields are controlled by only one

process. That is, multiple processes may read them, but they are written by only one

36

process. For example, ADMIN writes the handle, availability, control net socket address,

processing capability, and data net IPv4 address fields.

After initialization, ADMIN displays a menu containing the following items:

• start controller - spawns the operational processes (i.e. update server and load-

balancing router)

• stop controller - halts operation of the controller; kills the operational processes

• enable/disable a firewall record - allows firewall machines to be designated as

ready for service or not from the controller's point of view

• add/delete/modify firewall records - edit information in disabled firewall

records.

• view firewall record list

• view operational parameters

• change parameters - changes the parameters on the fly

• exit - kills the operational processes and terminates the administrator

The menu remains available to the user running the controller program until the exit option

is selected or the ADMIN process is manually killed. ADMIN waits for a selection to be

made from the menu. It also reacts to problems with its children. A SIGCHLD signal from

the operating system tells ADMIN that a problem has occurred causing one of its children to

terminate. It reacts by displaying an alert to the screen and halting controller operation by

killing its other child process.

2. Update Server

The update server is an operational process spawned by ADMIN. UPDATE

SERVER listens on the control net for firewall machines to announce their readiness for

operation. When the server receives a new TCP connection on the designated port to which

it is listening, it spawns an instance of itself: a child process to deal with the particular

firewall. The parent process, whose state diagram is shown in Figure 11, continues to listen

for other firewall announcements.

37

/ Spawn \
I child J

\ I new
\ /connection

done\ /

-.—-^ update timer
next poll

time and num s' ~\
/ T j T~^~^ expires
/ Load- \ ~~^_^

1 balancing 1 "--~.
\ algorithm 1^

^* / done
i Lis

updated^-^/ \
^^ 1 Poll signal \

■^"^ V to childrenJ
ten y

poll timer
expires

disable .
signal/ \ done

/disable signalV
I to children /

'done
\

sigchld \
recvd \

* Verify record^
I deactivated J

Figure 11 Parent Update Server state diagram

The parent also performs other tasks as follows:

1) Coordinates polling of the active firewalls

2) Relays signals to its children when ADMIN disables a record and signals the

parent update server

3) Calls the load-balancing algorithm after load updates and after firewall

activation/deactivation by its children

4) Verifies that a child update server's associated record is deactivated when the

child terminates.

38

good response and
miss count reset

Figure 12 Child Update Server state diagram

The parent process coordinates polling for load updates so that all of the children

poll at about the same time. The goal is for load updates to arrive at the controller within a

reasonably tight time span of each other, allowing the parent to call the load-balancing

algorithm shortly thereafter. The parent process relays signals from the ADMIN process

because it knows who its children are. When the ADMIN process disables a record, the

UPDATE SERVER children must check the availability field of their respective firewall

records to determine whether they should deactivate the record and terminate the

connection. ADMIN is able to signal the parent UPDATE SERVER. The parent relays the

signal to its children.

The child UPDATE SERVER, whose state diagram is shown in Figure 12, verifies

the announcing firewall machine by checking for an enabled entry in the firewall table. If

the firewall is recognized by an enable entry, then the child UPDATE SERVER checks the

"hello" message against its expected message. If the check passes, then the server sends an

39

Address Resolution Protocol (ARP) request on the data network to obtain the Ethernet

address of the firewall's data net interface to the controller. It uses the IP address listed in

the data net address field of the firewall record for the ARP request. If either the address

check or the hello message check fails, or if the server is unable to obtain an Ethernet

address for the firewall, then the child server terminates the connection and exits. It also

notifies the user that the firewall announced itself and the reason for not accepting it as an

operational firewall. A successful validation causes the server to acknowledge the firewall,

activate the firewall record, and begin polling the firewall machine for load updates using

the open TCP connection. The result of spawning child update servers is that the controller

has an UPDATE SERVER for each active firewall.

Each child UPDATE SERVER records updates received from its respective firewall

in the load field of the associated record of the firewall table. It also resets the associated

misses field to zero with each answered poll. The misses field indicates the number of

consecutive poor health reports and poll non-responses. If a firewall machine does not

answer a load update poll or reports poor health, then the UPDATE SERVER increments

the misses field of its associated firewall record. If a firewall's misses field exceeds a pre-

determined threshold value, then the UPDATE SERVER deactivates the associated firewall

record and signals the parent UPDATE SERVER process.

The UPDATE SERVER'S load-balancing algorithm determines the parameters to

be used for statistical distribution of new connections. The load-balancing algorithm

determines the proportion of new connections that each firewall should receive. It

determines the distribution factor for each firewall as follows [Ref. 22]:

Load-balancing algorithm

• For each active firewall x

mx = capx / captot

LFx(t) = Lx(t)/Lt0t

kx(t) = LFx(t)-mx

dfx(t+l) = dfx(t)-r*kx(t)

40

where mx = fraction of total firewall processing capability that x represents

capx = processing capability of firewall x

captot = total processing capability of the firewall architecture

LFx(t) = load factor for firewall x

Lx(t) = current load on firewall x

Ltot = total load on all active firewalls

kx(t) = correction factor for x

dfx(t) = current distribution for x

dfx(t+l) = corrected distribution factor for x

r = a relaxation factor, typically 0.7

• Set the distr field of the first active record to dfi(t+l)

• For each active record x, beginning with the second one, set the distr field to

distr of the previous active record + dfx(t+l)

3. LB Router

The load-balancing router (LB ROUTER) is an operational process spawned by

ADMIN. It routes outbound packets to the appropriate firewall machine based on the

results of its scheduling algorithm and the contents of its routing table. Figure 13 shows the

state diagram for LB ROUTER.

LB ROUTER runs in user, vice kernel, memory space. A result of this decision not

to modify the BSD/OS kernel is that certain implementation methods and system

configuration must be used. LB ROUTER should not have to process inbound network

traffic for two reasons: 1) it does not need to balance load for incoming traffic and 2) the

BSD/OS operating system has IP forwarding capability. So, the operating system on the

controller machine should be configured to forward inbound traffic. However, since LB

ROUTER is responsible for routing outbound traffic, the operating system should not

forward outbound traffic. Outbound network traffic will not be addressed to the controller

machine since the operating system will not pass it up through the protocol stack in the

41

kernel to a user space program. However, LB ROUTER must receive the traffic so it can

examine each packet in user space and route it to the appropriate firewall machine.

 *f Start V

Figure 13 LB ROUTER state diagram

LB ROUTER uses BPF to intercept outbound Ethernet frames at the data link layer

of the protocol stack (i.e. the network interface). BPF is a service in the BSD/OS kernel.

The kernel sends a copy of each Ethernet frame received by the network interface to any

open BPF devices before sending the frame up the protocol stack. LB ROUTER 1)

examines each frame, and thus the IP packet, 2) makes additions or deletions needed to its

routing table, 3) constructs a new Ethernet frame with the address of the appropriate firewall

machine, and 4) transmits the frame on the Ethernet interface to the firewalls using BPF.

LB ROUTER'S routing table contains records for all open TCP connections. Each

record consists of the following information:

• source socket address

• destination socket address

• data net Ethernet address of the firewall mediating the connection

42

LB ROUTER examines each intercepted packet to determine whether it establishes a new

connection. If the packet establishes a new connection, LB ROUTER calls its scheduling

routine to determine which firewall should get the new connection. It then records the

connection in its routing table and generates a new data link layer frame for routing. If the

packet is connectionless traffic, LB ROUTER calls its scheduling routine and generates a

new Ethernet frame. If the packet is connection-oriented and not for a new connection, LB

ROUTER sends the packet to the firewall machine recorded in its routing table. If the

packet is TCP but belongs to no existing connection, then it is discarded.

43

44

IV. TEST NETWORK CONFIGURATION

r* .2 .2
. Router

rwi
3.

.2 i L

i i

192.1.4

"

192.1.3

.1

4 1*2.1.1 Router .1 .3 .3 .1 Controller rwz

.3 .1
A

192.1.2

,.

-* A FW3 .4 «■

.4
L

Figure 14 Test network addressing scheme

This chapter discusses issues involved in building a test network for the software

design described in Chapter 3. The intent is to aid system testers and to provide some

guidance for creating reproducible tests. Figure 14 shows an example test network. The

network consists of three firewall machines, a controller machine, and two machines

representing the interior and exterior routers in the physical architecture. For testing

purposes, these two endpoint machines should not be routers, but rather should be machines

that will generate and receive test traffic passing through the firewalls and controller. For

simplicity and to reduce cost, the test network uses three 4-port Ethernet hubs and a direct

connect cable rather than switches as shown in Figures 1 and 5. The direct connect cable

connects the interior router to the controller and one hub connects each of the other three

domains.

The firewall machines and controller run the BSD/OS operating system and have

three network interface cards (NIC) represented in Figure 14 by rectangles within each

45

machine. BSD/OS 3.1 is fairly restrictive in the selection of NICs that it supports so

checking the hardware support list is essential before building the test network. SPAWAR

typically uses the 3COM 3C905B Fast EtherLink and the Intel Pro/100+ Ethernet cards.

The 3COM card requires two patches (numbers 21 and 28) for BSD/OS 3.1 to be installed

before the operating system will properly support it.

The addressing scheme of the network uses four Class C domains. The 192.x.x.x

addresses are not assigned to any particular Internet user and so are typically seen in test

networks [Ref. 21]. Figure 14 shows the IPv4 address associated with each network

domain (192.1.x) and the unit address within each domain (.x) for the network interfaces.

This thesis does not cover BSD/OS system administration. However, most UNIX

administration texts explain how to configure network interfaces and to manually enter

routes into a machine's routing table. Manual route entry is required to enable the

controller's operating system to forward inbound traffic. Once the network interfaces are

configured and manual routes entered, TIS Gauntlet firewall software is installed on the

firewall machines.

Initialization files tailored to the test network interfaces must be written for the

firewall machines and for the controller. The firewall initialization files tell each firewall

the control net address of the controller and what port number it should use to communicate

with the controller (192.1.2.1 in Figure 14). They also provide operational parameters such

as load sampling rate. The controller's initialization file tells it the network interface

designated as the control net and the port number on which it should listen for firewalls to

announce themselves on the control net as ready to receive data network traffic. The file

also contains operational parameters such as load polling increment.

Test programs should generate traffic originating at the interior endpoint of the

network (192.1.4.2) and destined for the exterior endpoint (192.1.1.1). These programs

should generate varying volumes of traffic and numbers of simultaneous connections to

stress the logical operation and capacity of the architecture.

46

V. DISCUSSION AND CONCLUSIONS

This section discusses observations made during the software design, follow-on

work, and future research topics. It ends with conclusions on the work presented here.

A. LESSONS LEARNED FROM SOFTWARE DESIGN

The software design underwent a series of changes during development. This

section describes some of the lessons learned and changes made. Some changes were

simply refinements to aid ease of understanding the problem and proposed solution while

others were needed to avoid potentially serious problems, especially when considering a

multiple processor controller platform.

The first decision that must be made in software design is the architectural style to

be used. The merits of a modular, layered design have long been known. However, this

approach to design once again showed itself to be a superior one. Other architectural styles

were initially considered for the design. However, modularity and layering eventually

emerged as the appropriate methodology. While one cannot be provably certain that no

flaws exist in a system, modularity and layering provide a means of eliminating many

potential flaws during the design phase of a project rather than the implementation and

testing phases.

The design process proved to be an iterative one. Modularity and layering lend

themselves to iterative design, with refinements being made at each stage of the process.

One problem discovered as a result of the iterative design review was a situation in which a

child update server process could terminate due to an error without deactivating the firewall

record for which it was responsible. This situation would cause the controller to route

network traffic to the firewall with no knowledge of its load or whether it was even

operating.

Initially, a linked list was considered for the firewall database. However,

concurrency problems arose unless mutual exclusion techniques were used to restrict rather

47

severely the various processes' access to the shared data structure. Additional analysis

indicated that a completely general solution was not needed. Linked lists were unnecessary

given the realistic limitation on the number of firewall machines that would be used. So,

the database was designed as a static array, thus avoiding the concurrency problems

encountered with linked lists.

Another refinement of the system was encapsulation of data structures within source

files rather than providing global access to the shared structures. Handles to records in

databases were used, where practical, vice passing pointers around, a riskier prospect in

terms of breaking encapsulation.

The choice of inter-process communication (IPC) method was also a concern. The

appropriate IPC must be an integral part of a multi-process design scheme. The selected

method should be synergistic with the control flow of a design. Several IPC options were

considered before deciding upon signals. The need for asynchronous, near real-time

communications between the controller's processes made signals an appealing choice.

As a final note, the level of knowledge and skill required for proper system design is

formidable. Much research and many experiments with UNIX networking and IPC were

conducted to gain a sufficient knowledge base to be able to begin design work. Designing

multi-threaded or multi-process systems is non-trivial. Given that implementation and

testing are not complete, the design presented in this thesis is sure to have future

refinements or changes.

B. FOLLOW-ON WORK AND FUTURE RESEARCH

The following list discusses follow-on work and future research areas related to the

load-balancing firewall architecture presented in this thesis:

1. Continue implementation of the proposed physical architecture and the software

architecture for outbound network traffic. The physical architecture, for testing

purposes, is relatively easy to setup in a lab environment. The software libraries for the

various data structures discussed earlier have been implemented with the exception of

the lt_update_table() function, which involves the netstat program. The netstat source

48

code and programming interface are being reviewed for use. Control logic for the

various processes is in progress. Remaining work includes writing signal handlers for

TPC in the controller, writing code involving BPF for both the controller and the firewall

load monitor, and writing the LBrouter() function.

2. Design and implement a standard bench testing procedure for obtaining values for the

baseline processing capability of firewall machines. This procedure should take into

account the extension of system capabilities to include adaptive scheduling according to

network load and traffic composition. With a system that adapts to network traffic

composition, the bench testing must provide a baseline throughput value for each

protocol admitted through the firewall.

3. Thoroughly test the performance of the system. The testing should be done in stages:

first testing each layer of the design, then testing groups of adjacent layers, and finally

testing the system as a whole. System testing should be conducted using various

network loads, with various traffic compositions, and with various settings of the

tunable system variables (i.e. adjusting relaxation factor, polling interval, and sampling

interval).

4. Design and implement the load-balancing DNS software for balancing inbound network

traffic. A load-balancing DNS program exists in the Perl scripting language [Ref. 23].

This program could be converted to C and used as a building block for the DNS. The

design of the DNS program should take into account both connected and disconnected

modes of operation. Connected mode involves a one-way fiber system connecting the

DNS to the control net, allowing the server to receive control signals. Disconnected

mode has the DNS operating essentially independently. The controller may need to

send basic firewall machine status reports (i.e. a new machine is up or a machine is

down) through the firewall to the DNS. This decision would allow the DNS to obtain

the information it needs on operational firewall machines with a minimum of control

signals being passed over the data net. Another option is to have the DNS detect which

firewall machines are operational by monitoring network traffic passing between the

exterior router and the parallel firewall machines.

49

5. Include an audit module on each machine. This module will timestamp all alerts,

display them to the screen, write them to a log file, and coordinate switching among

logs files as necessary. The current design requires each function to display its own

alerts and no logging is done.

6. Assuming no one-way fiber system is used for connecting the DNS to the control net,

test the option of having the DNS monitor the data going to each firewall machine.

Since the DNS normally processes only domain name requests, its work load is light.

Having it monitor data passing between the exterior router and the parallel firewall

machines could provide it with load information for each firewall machine. It could use

this information in its load-balancing algorithm. In this case, the DNS would perform a

load monitoring function similar to that of the firewall load monitors. However, the

DNS would map the amount of data passing across the network, rather than queue

length, to TCP connections.

7. Move the controller's routing process to kernel space for improved performance. The

current software design places the controller's routing process in user memory space.

As a result, the program uses the kernel's BSD Packet Filter service to obtain outbound

network traffic and to forward the traffic to a different network interface. The operating

system kernel must copy the desired information from kernel memory space to user

memory space for the user program to access it. The revised information must then be

copied back to kernel space from user space so the kernel can transmit it on the

appropriate network interface. Moving the necessary functions from user to kernel

memory space will eliminate the overhead associated with these copy routines. Slight

modifications to the operating system's normal IP forwarding routine should allow the

load-balancing routing functions to be called as the kernel decides which default

gateway to forward an IP packet.

8. Extend administrative functions to support remote administration. Having separate

control and data nets facilitates remote administration via the control net. Adding a

remote access server to the control net would enable administrators to access the

components of the system via dial-in or dedicated phone line connections. This

50

extension to remote administration may necessitate having user and machine

authentication between components.

9. Transition to adaptive load sampling and scheduling to account for situations such as

wildly fluctuating network traffic patterns (where increasing sampling rate would be

appropriate) and changing traffic compositions by protocol (where weight factors for

HTTP, SMTP, FTP, etc., may need to be adjusted in the load-balancing algorithm).

Adaptive behavior in the system may require the addition of a machine dedicated to

monitoring traffic load and composition to the architecture. This machine would be

best situated with a tap into the network between the interior router and the controller so

it could see all network traffic passing through the firewall architecture. The controller,

firewall machines, and possibly the DNS, could use the traffic monitor's results to adapt

their behavior appropriately. Investigating the possibility of having the DNS monitor

traffic was mentioned earlier. However, the DNS could not convey the results to the

other architectural components for two reasons: the DNS cannot transmit on the control

net and the other components are designed to ignore control signals arriving on the data

net.

10. Provide support for both IPv4 and IPv6 addresses and for hardware formats other than

Ethernet. This area may include modifying the system for use in ATM networks.

C. CONCLUSIONS

The proposed load-balancing firewall architecture provides a solution to the

limitations and potential performance bottleneck associated with the currently used parallel

firewall architecture. These characteristics are obtained with no effect on the commercial

products (i.e. the routers, the firewall software product, and the operating system) already in

use in the current firewall architecture. Specific software has been designed here and must

be implemented to control the proposed system, as opposed to being purchased off-the-

shelf. However, the impact in terms of financial, administrative, and manpower resources

required on the part of the Navy is negligible compared to specialized software product

development.

51

The modular layered software design has several advantages over other design

styles. It orders dependencies in the system, limiting the set of possible conditions in any

given layer and thus allowing comprehensive testing in stages. It aids understanding of the

system for implementers and for follow-on researchers. It also makes the associated code

easily verifiable for correctness. Much of the implementation has been completed but is left

for future testing and publication.

The issue of processing overhead, and its cost in data throughput, associated with

load sampling and load balancing (i.e. routing in the controller) seems to be the most

significant issue in proving the system's worth. Future in-depth testing will reveal these

answers. The software system provides an administrative interface for performance tuning.

The anticipated issue is not in whether the system is sufficient, but rather is in finding the

right balance between sampling frequency for an acceptable estimate of load and

performance degradation due to processing overhead.

This thesis provides a foundation upon which to build a parallel firewall system that

has marked advantages over those currently in use. The design will yield a scalable product

that permits each firewall to be multi-protocol, provides an accurate assessment of firewall

load, and is responsive to changing system and network conditions via feedback control. It

will accomplish these tasks while maintaining firewall product, router, and firewall machine

independence, while isolating the system from external mechanisms, and while isolating

control signals from network data. Future work will improve and extend the capabilities of

the system, increase its efficiency, and provide extensive test data and analysis as a guide to

new research.

52

APPENDIX A. SOFTWARE REQUIREMENTS SPECIFICATION

1.0 Introduction

1.1 Purpose

The purpose of this document is to define the software requirements for a load-

balancing firewall system to be used for multiple parallel firewall machines as

described in Reference 1. This document describes the load-balancing mechanism

for outbound traffic; that is, network traffic initiating from inside the protected

enclave and going to the outside world via the firewall.

1.2 Scope

The software developed must meet several requirements:

• Run on BSD/OS 3.1 operating system

• Support TIS Gaundet firewall product

• Balance network load (both connection-oriented and connectionless) across all

machines

• Provide 100 Mbps data rate to support Fast Ethernet networks with ability to

increase throughput later

Additional features to be supported by the developer are as follows:

• Firewall product independence

• Robustness to account for a firewall machine malfunctioning

• Scalability to allow greater firewall throughput by adding more machines in

parallel

1.3 Glossary of Definitions and Abbreviations

BSD/OS Berkeley Software Design Operating System

53

Connectionless
traffic

Network traffic using an OSI Transport Layer protocol that
simply transmits data on the network without regard to
establishing a network connection between source and
destination machines verifying receipt of the data

Connection-oriented Network traffic using an OSI Transport Layer protocol that
traffic establishes an open network connection between source and

destination machines prior to sending data, and that verifies
receipt of the data prior to closing the connection

COTS

DNS

IPv4

Mbps

Network load,
Network traffic

TCP

Throughput

TIS

Commercial Off-The-Shelf

Domain name server

Internet Protocol version 4

Mmega-bits per second

The amount of data transiting the network

Transmission Control Protocol

The amount of network traffic being processed through
a component or architecture

Trusted Information Systems

2.0 General Characteristics

2.1 Introduction

The load-balancing firewall software system will be a distributed system

intended to allow a heterogeneous mix of firewall machines, running various COTS

firewall products, to work together in a parallel architecture. The software will

distribute network traffic, both connection-oriented and connectionless, to the

firewall machines such that each machine processes only a fraction of total network

load proportional to its processing capability.

The physical architecture of the system (see Figure 1) involves 1) interior

and exterior COTS routers, 2) multiple firewall machines connected in parallel, 3)

an intermediate load-balancing machine (known as the controller) located between

54

the interior router and the firewall machines, and 4) a load-balancing DNS located

between the exterior router and the firewalls. The software system will be

distributed across all physical components in the architecture. The software

components will communicate among themselves the information necessary to

perform activities listed in section 2.3.

Fleet

Firewall

Switch *

_t
Firewall

DNS

_r

Virus checking/
Intrusion detection

Router
 z

> Switch Controller

Cnntrol net

Firewall

Figure 1 Physical architecture

This document addresses only with outbound network traffic. The DNS will

balance inbound network traffic and the controller will balance outbound network

traffic. The software components on each firewall machine will monitor load on

that machine and report it to the component in which the load-balancing algorithm

resides. The controller will distribute outbound network traffic according to the

load-balancing plan generated from firewall machine load updates. Inbound

network traffic will pass through the controller with no action on the part of the

software being developed here.

55

2.2 Product Perspective

The software system is to operate as a stand-alone package. However, the operating

system and hardware on each machine must be configured properly for the whole

firewall architecture to work correctly.

2.3 Product Activity

The software will perform the following activities:

• Read system initialization data from a pre-existing file

• Provide an interactive administrative interface for changing system parameters

• Monitor load on each operational firewall machine

• Perform operational checks to verify that each firewall machine is operating and

that the firewall product on each firewall machine has not stopped running

• Balance network load, both connection-oriented and connectionless, among

operational firewall machines in the parallel firewall scheme

2.4 User Characteristics

1. It is assumed that users will have some experience as UNIX system

administrators or technicians and will be familiar with installing software on and

configuring UNIX platforms.

2. It is assumed that system technicians performing bench testing of firewall

systems will be thoroughly familiar with software installation, UNIX system

configuration, and network communications.

2.5 General Constraints

1. The source code will be written in the C programming language.

2. The program will be designed to run on UNIX operating systems, specifically

BSD/OS 3.1.

56

3. The program will support IPv4 protocol addresses and Ethernet hardware format

addresses.

4. The program will balance TCP connection-oriented network traffic and

connectionless traffic.

2.6 Assumptions

1. Proper bench testing will be conducted to determine the baseline processing

capability of each firewall machine. Each machine will be tested in the

configuration (both hardware and software) in which it will be used in the

parallel architecture.

2. Interactive administrative interfaces will be UNIX foreground processes that

must remain active for the software on that physical component to function

properly.

3. The physical architecture will be similar to that shown in Figure 1 and described

in Reference 1. The network medium will use Ethernet hardware format. The

hardware components (e.g. network interface cards) and their configuration will

support BSD/OS 3.1 and thus the software being developed here.

3.0 Specific Requirements

3.1 Functional Requirements

3.1.1 Load Monitoring

1. Introduction

Load will be monitored for each firewall machine.

2. Processing

Receive queue length will be the metric used to measure load. A weighted

average of load will be maintained between updates to the controller. The

57

greater of current queue length and historical weighted average of queue

length will be reported as the load.

3.1.2 Load Balancing

1. Introduction

The software system will act to balance network traffic load among firewall

machines.

2. Processing

Network load will be distributed based on the known processing capability

of each firewall machine, the reported load for each machine, and the

previous state of the load distribution process.

3.1.3 Routing

1. Introduction

The controller will route outbound network traffic to the appropriate firewall

machine as determined by the load-balancing scheme.

2. Processing

Once a new connection is established through the firewall, all traffic

associated with that connection must go to the same firewall machine.

Connectionless traffic may go to any firewall machine.

3.1.4 Data Entry

1. Introduction

Control parameters and firewall information can be viewed and entered

interactively at the keyboard of the controller.

2. Processing

The user will be able to view and modify the controller's firewall

information and operational parameters whose adjustment can tune the

program's performance.

3.2 External Interface Requirements

58

3.2.1 User Interfaces

The software will use menus to allow users to view and modify data described

in section 3.1.4. Menu options will be selected via the keyboard.

3.2.2 Hardware Interfaces

The software will operate with multiple Ethernet network interface cards

installed per machine.

3.2.3 Software Interfaces

The software will be designed to run under UNIX operating systems, but is

required to be tested only under BSD/OS.

3.3 Performance Requirements

1. Status messages will provide the user with immediate feedback on events

occurring in response to the user's menu selections. The software will also

immediately notify the administrator of runtime errors such as being unable to

open a socket, an unrecognized firewall machine communicating with the

controller, and a firewall record being deactivated by the controller because the

firewall machine does not respond to load update polls. These notifications will

be made to the terminal of the machine on which the error occurred and may

also be made to a log file.

2. The software system will provide a data throughput capability for the parallel

firewall architecture greater than that of the routers and of the network.

3.4 Design Constraints

1. No modifications may be made to commercial software products existing on the

physical components (e.g. the commercial router software and the BSD/OS

kernel).

2. Code must be written in C, but should be modular and carefully layered.

59

60

References

1. William Joyner, "Design of a Load-Balancing Architecture for Parallel
Firewalls," Naval Postgraduate School, Monterey, California, March 1999.

61

62

APPENDIX B. SOFTWARE DESIGN SPECD7ICATION

1. Introduction

Purpose

This document describes the software design for a load-balancing firewall system

used for multiple, parallel firewall machines. Specifically, it describes the load-

balancing software architecture for outbound traffic; that is, network traffic initiating

from inside a protected enclave and going to the outside world via the firewall. The

document is intended for use as a roadmap for software designers making future

modifications and as direction for source code implementers.

Scope

The software design presented here is intended for use in physical architectures of

two or more firewall machines as described in Reference 1. The design will meet

the following requirements:

• Run on BSD/OS 3.1 operating system

• Balance network load (both connection-oriented and connectionless) across all

firewall machines

• Provide 100 Mbps data rate to support Fast Ethernet networks with ability to

increase throughput later

• Firewall product independence

• Router independence

• Robustness to account for a firewall machine malfunctioning

• Scalability to allow greater firewall throughput by adding more machines in

parallel

• Support for IPv4 and Ethernet hardware format addresses

63

Summary of Contents

The remainder of this document covers several topics, starting at a high level of

design and working down to detailed explanations of function prototypes. First, the

document provides a high level overview of the system (Section 2) and discusses

high-level design decisions made based on assumptions, dependencies, and

constraints (Section 3). It then discusses architectural strategies (Section 4) used in

the design and presents the software architecture from a high-level perspective

(Section 5). Finally, it presents a detailed discussion of the design, providing

relevant design decisions along the way (Section 6).

Glossary

API Application programming interface

BSD/OS Berkeley Software Design Operating System

BPF BSD Packet Filter

Connectionless Network traffic using an OSI Transport Layer protocol that
traffic simply transmits data on the network without regard to

establishing a network connection between source and
destination machines verifying receipt of the data

Connection-oriented Network traffic using an OSI Transport Layer protocol that
traffic establishes an open network connection between source and

destination machines prior to sending data, and that verifies
receipt of the data prior to closing the connection

COTS Commercial Off-The-Shelf

DNS Domain name server

IPC Inter-process communication

IPv4 Internet Protocol version 4

Mbps Mega-bits per second

Network load, The amount of data transiting the network
Network traffic

TCP Transmission Control Protocol

64

Throughput The amount of network traffic being processed through
a component or architecture

TIS Trusted Information Systems

2. System Overview

The load-balancing firewall software system is a distributed system intended to

allow a heterogeneous mix of firewall machines, running various COTS firewall products,

to work together in a parallel architecture. The software distributes network traffic, both

connection-oriented and connectionless, to the firewall machines such that each machine

processes only a fraction of total network load proportional to its processing capability.

The physical architecture of the system [Ref. 1] involves 1) interior and exterior

COTS routers, 2) multiple firewall machines connected in parallel, 3) an intermediate load-

balancing machine (known as the controller) located between the interior router and the

firewall machines, and 4) a load-balancing DNS located between the exterior router and the

firewalls. The software system is distributed across all physical components in the

architecture. The software components communicate among themselves the information

necessary to monitor and balance network traffic in the parallel firewall architecture.

This design document pertains only to balancing outbound network traffic. Thus, it

presents the software design for components residing on the firewall machines and the

controller. Since the DNS balances inbound network traffic, its software components are

not addressed. However, the design takes into account the future incorporation of the DNS

software components into the overall architecture.

The software components on each firewall machine monitor load on that machine.

They report load values to the controller periodically. The controller's software

components generate a load-balancing plan based on the load reports from each firewall

machine. The controller routes outbound network traffic to the appropriate firewall

machine according to the load-balancing plan. Inbound network traffic is intended to pass

through the controller with little or no action on the part of the software designed here.

65

The software on each machine reads an initialization file at startup. The

initialization file contains addresses of machines with which the program will communicate

and operational parameters for the program. The controller's software also provides a user

interface to allow the user to view and modify the'load-balancing system information on the

fly.

3. Design Considerations

Assumptions and Dependencies

1. Proper bench testing will be conducted to determine the baseline processing

capability of each firewall machine. Each machine will be tested in the

configuration (both hardware and software) in which it will be used in the

parallel architecture.

2. Interactive user interfaces will be UNIX foreground processes that must remain

active for the software on that physical component to function properly.

General Constraints

1. The source code must be written in the C programming language.

2. The program must be designed to run on UNIX operating systems, specifically

BSD/OS 3.1.

3. The program must support IPv4 protocol addresses and Ethernet hardware

format addresses.

4. The program must balance TCP connection-oriented network traffic and

connectionless traffic. All non-TCP traffic will be treated as connectionless.

5. The program must operate on the physical architecture described in Reference 1.

6. No modifications may be made to commercial software products existing on the

physical components (e.g. the commercial router software and the BSD/OS

kernel).

66

7. The design must be modularized and layered. These characteristics increase

ease of understanding of the code and facilitate verifying the code's correctness.

References 2 and 3 are classic papers discussing modularization and layering.

Guidelines

1. The design should be as simple and straightforward as is practicable.

2. The design should focus on speed and efficiency without compromising good

design and programming practices. Time-consuming evolutions, such as

context switching and busy waiting, should be minimized where practicable.

3. Communications between processes, regardless of whether the processes are on

the same or different machines, should be kept to reasonable amounts. High

communication volume brings latency and processing overhead to the program.

4. Architectural Strategies

1. The C programming language was chosen because it lends itself to

programming with UNIX system APIs.

2. The controller polls the firewall load monitors for load updates. This decision

allows the controller to receive load updates in a coordinated manner rather than

piecemeal, without having to synchronize clocks in the distributed system. Not

having to synchronize clocks in the distributed system saves much processing

overhead and latency due to message passing. Since the controller asks for load

updates from all firewalls simultaneously, it expects to receive all of the load

updates at nearly the same time. It can then run the load-balancing algorithm

once for that update iteration. Allowing the firewalls to send load updates

asynchronously would either cause the controller to run its load-balancing

algorithm more frequently or degrade the accuracy of the load-balancing

calculations by having the controller run the algorithm at random times.

3. A central data structure is used with handles to relevant parts of the structure

being passed to functions whenever practicable. Passing handles to a single

67

instance of data eliminates potential data consistency problems that can occur in

multi-process programs if multiple instances of data exist.

4. Whenever possible, data fields and the functions that operate on them are

partitioned among the multiple running processes such that minimum potential

conflict exists that would require mutual exclusion measures such as locks or

semaphores.

5. A modular approach to design dictates creating modules by functional

responsibility [Ref. 2]. A module is composed of one or more functions with

related functional responsibility and perhaps an associated data type.

Decomposing a software system into modules makes it easier to understand, to

change and maintain (i.e. design changes), and to develop in a piecemeal,

independent manner. A layered approach dictates that designs have multiple

layers of functions [Ref. 3]. Higher level functions have more abstraction in

their tasks than lower level functions. They generally call lower level functions

to perform more specific, less abstract tasks for them. Ideally, the entire layered

architecture is only downward dependent (i.e. no function calls a function at an

equal or greater level than itself). This characteristic creates a partial order

among functions, greatly improving ease of understanding and making code

verification for correctness far easier.

6. Databases should generally be made private by instantiating them in their

modules' source files. This action encapsulates the databases. The methods for

a particular database will mediate access to the database for client programs.

68

5. System Architecture

Control net via OS

_J
Load Monitor

Control
Logic

Comms
Logic

Utility / Wrapper
functions

Load Table Module

Socket Address
functions

Socket Address
LAVS functions

LAVS

Figure 1 Firewall Load Monitor Architecture

The software system architecture is distributed across each component in the

physical architecture. One or more processes related to the load-balancing architecture runs

on each physical component. The separation of functional responsibilities that should

logically run in parallel determines the number of processes on a component.

Each firewall machine runs a load monitoring process. Figure 1 shows this

process's architecture. The decision to place load monitoring on each firewall machine is

discussed in Reference 1. The load monitor announces itself to the controller at start-up and

then monitors load on the firewall machine. When it receives an update poll from the

controller, it answers with its latest load value.

69

■

ADMIN " "",

Control
Logic

1

1
1

Ir-
! I

1
Operations 1

+ . 1 4—
1 i

[»DATE SERVER 1 ■"" — — -"■ LBROUTER 1

Control
Logic 1

1
J

1 Control
Logic 1

1 i 1 *
Comms
Logic

I

Scheduler 1 ■

' ir

1 1
— — - *^™ ™ ̂H ^^H MM

1 1 Route Table Module

■Utility / Wrapper!
I functions j

Firewall Database Module

FWDB functions
Route Table

functions

FW Database
V

Route Entry
functions

Hash Table
functions "

Soi :ket Address Mi)dule

Socket Address
functions

1 I
Route Entry

LAVS functions Routing Table
(hash table) ' '

Socket Address
LAVS functions

LAVS

LAVS

Figure 2 Controller Software Architecture

The controller runs three processes: one for interacting with the firewall load

monitors to get load updates, one to route outbound network traffic to the appropriate

firewall machine, and one to provide a user interface. Figure 2 shows the controller's

software architecture. Chapter 3 of Reference 1 discusses the functioning of each controller

process and provides each process's state diagram.

6. Detailed System Design

This section describes the functions and data structures that make up the processes

mentioned previously. It lists BSD/OS system structures used in the design and describes

the functions generated to use them. It also defines data types generated for this design and

their related operations. Finally, it describes the composition of each process.

70

Lists of available space (LAVS) are used throughout the design to improve

performance. A list of available space contains unused instances of the applicable data type

or structure. Its use minimizes costly operating system calls to allocate/deallocate memory

from the heap for dynamically allocated data structures. When a new instance of the data

structure contained in the LAVS is needed, the client program first calls a LAVS function to

determine whether any unused instances of the data structure exist. If an instance is

available, then it will be used vice calling the operating system to allocate new memory

space for an instance of the data structure. When data structures are deleted, they are placed

in the LAVS rather than being deallocated by the operating system. A LAVS is intended to

be private. That is, it is instantiated with file scope within a module's source file (*.c file)

for use by the module's functions, but it may not be accessed via the associated header file.

The following definitions and BSD/OS system data types and structures are used in the
design:

«define TRUE 1
«define FALSE 0
u_char unsigned character
u_short unsigned short integer
u_int unsigned integer
ujong unsigned long integer

6.1. Utilities Module

This section defines general utility functions and wrapper functions for BSD/OS
system function calls used in the software design. The wrappers include error handling and
are tailored for IPv4 TCP socket communications.

Function prototype FILE *Fopen(const char *name, const char *type);
Description Wrapper function for the UNIX fopen() function. It takes the

filename of the desired file to open and the mode in which to
open it (e.g. r, w, etc.) as arguments and returns an open file
descriptor. If an error occurs while attempting to open the file,
the function displays an error message and exits the program.

Input name - string indicating the name of the file to be opened
type - string indicating the permissions with which to open the

file

71

Note that these are the same arguments used by the system call.
Return Open file descriptor
Constraints None
Pseudo code Call fopen()

If error occurs
Display error message
Exit

Return open file descriptor

Function prototype int Socket();
Description Wrapper function for the UNIX socket() function. It opens a TCP

socket and returns the socket descriptor. If an error occurs while
opening the socket, the function displays an error message and
exits the program.

Input void
Return Socket descriptor
Constraints None
Pseudo code Call socketO

If error occurs
Display error message
Exit

Return open socket descriptor

Function prototype void Bind(int sockfd, SOCKAI *addr);
Description Wrapper for the UNIX bind() function. It binds a local protocol

address to a socket. If an error occurs, it displays an error
message and exits the program.

Input sockfd - an open socket descriptor
addr - handle to the local address to which to bind the socket

Return void
Constraints An address may be bound to only one open socket descriptor at

any given time.
The address given for binding must be a valid interface address
on the particular machine running the program.

Pseudo code Callbind()
If error occurs

Display error message
Exit

72

Function prototype void Listen(int sockfd, int backlog);
Description Wrapper function for the UNIX listen() function. It places a

socket in passive (i.e. listening) mode.
Input sockfd - socket descriptor for the socket of interest

backlog - maximum number of connections that the kernel
should queue for the socket

Return void
Constraints None
Pseudo code If the environment variable LISTENQ is defined

Use it as the max queue length vice backlog
Call listenO
If error occurs

Display error message
Exit

Function prototype int Accept(int sockfd, struct sockaddr *addr, int *len);
Description Wrapper function for the UNIX accept() function. It accepts a

TCP connection on a passive socket. If there are no connections
waiting in the queue, then it sleeps until a connection arrives. If
an error occurs, then it displays an error message and returns
normally.

Input sockfd - listening socket descriptor
addr - address pointer for the client's address
len - int pointer for the length of the client's address

Return The socket descriptor of the connection received. The client's
address and address length for a good connection are returned via
the addr and len parameters. If an error causes the function to
terminate, then FALSE is returned and both addr and len pointers
will be NULL.

Constraints None
Pseudo code Call accept()

If an error occurs while waiting for a connection
If the error was due to a signal being caught, continue waiting
Else return FALSE

When a connection is received
Assign the client's socket address to addr
Assign the socket address length to len

Return the socket descriptor of the connection

Function prototype u_int conv_pton(const char *str);

73

Description Wrapper function for the UNIX inet_pton() function. It converts
an IPv4 address in dotted notation to numeric format in network
byte order.

Input str - IPv4 address in dotted notation
Return IPv4 address in numeric format and network byte order or

FALSE on an error
Constraints The address must be a valid IPv4 dotted address
Pseudo code Call inet_pton()

If the result is 1, then return the address
If the result is 0

Display message stating that the address given was not a valid
IPv4 address

Return FALSE
If the result is-1

Display message stating an error occurred during conversion
Return FALSE

Function prototype int readn(int fd, char *ptr, int nbytes);
Description Wrapper function for the UNIX read() function. It reads n bytes

from an open file descriptor. It is used for reading a desired
number of bytes from an open socket without possibly having to
make multiple read() calls.

Input fd - the open file descriptor
ptr - pointer for the data that was read
nbytes - the desired number of bytes to read

Return Integer telling the number of bytes actually read or -1 on an error.
This value should always be equal to the desired number of bytes
unless it is-1.

Constraints None
Pseudo code While less than the desired number of bytes has been read from fd

Read the open socket descriptor
If an error occurs

If the error is due to a caught signal, continue reading
Else return -1

Assign ptr to the data read
Return the number of bytes read

Function prototype int writen(int fd, char *ptr, int nbytes);
Description Wrapper function for the UNIX write() function. It writes n bytes

to an open file descriptor. It is used for writing a desired number

74

of bytes to an open socket without possibly having to make
multiple write() calls.

Input fd - the open file descriptor
ptr - pointer to the data to write
nbytes - the desired number of bytes to write

Return Integer telling the number of bytes actually written or -1 on an
error. This value should always be equal to the desired number of
bytes unless it is-1.

Constraints None
Pseudo code While less than the desired number of bytes has been written to fd

Write to the open socket descriptor
If an error occurs

If the error is due to a caught signal, continue writing
Else return -1

Return the number of bytes written

Function prototype void insert_nt(char *str, int max, char tgt);
Description Replaces the first instance of the given target character with a null

terminator.
Input str - string to scan

max - maximum number of characters to scan
tgt - the target character to be replaced with the null terminator

Return void
Constraints None
Pseudo code Scan str until the tgt character is found or a null terminator is

encountered or max characters have been scanned
If tgt found, replace it with '\0'

Function prototype void waitkeyO
Description Delays a program and prompts the user to press RETURN to

continue. It is used for pauses to allow the user to see data
displayed to the screen.

Input void
Return void
Constraints None
Pseudo code Prompt user to press RETURN to continue

Get the return character

75

6.2. Socket Address Module

This section discusses the design's operations associated with the UNIX socket
address structures listed below.

#define SOCKAI struct sockaddr in

/* Internet address; defined in <netinet/in.h> */
struct in_addr {

u_long s_addr; /* 32 bit IPv4 address; network byte ordered */

/* Socket address; defined in <netinet/in.h>; abbreviated SOCKAI in code */
struct sockaddr_in {

u_char sin_len; /* total length = 16*/
u_char sin_family; /* address family; value is AFJNET */
u_short sin_port; /* 16 bit TCP or UDP port; network byte ordered */
struct in_addr sin_addr; /* IPv4 address */
char sin_zero[8]; /* unused */

};

/* Generic socket address structure supporting both IPv4 and IPv6;
defined in <sys/socket.h> */

struct sockaddr {
u_char sajen; /* total length */
u_char sa_family; /* address family; value is AF_xxx */
char sa_data[14]; /* protocol-specific address value */

};

Socket Address LAVS

The socket address module maintains a LAVS that is implemented as an array of SOCKAI
pointers. The array length is set in the source file by a constant. The counter
sockai_num_avail tracks the number of SOCKAI structures that are available in the LAVS
at any given time. The following declarations and methods create and operate on the
LAVS. The SOCKAI_lavs_prep() function should be listed in the socket address module's
header file so that the LAVS can be populated at program startup. The get() and put()
LAVS functions should be found only in the module's source file.

76

«define SOCKAI LAVS LENGTH 40

SOCKAI *sockai_lavs[SOCKAI_LAVS_LENGTH3 = {0};
int sockai_num_avail = 0;

Function prototype void SOCKAI_lavs_prep();
Description Populates the LAVS by creating SOCKAI structures for every

element of the LAVS
Input void
Return void
Constraints None
Pseudo code For each element in the LAVS array

Call malloc() to allocate memory for a new SOCKAI structure
Assign the element's pointer to the structure

Set sockai num avail = SOCKAI LAVS LENGTH
Calls mallocO
Effects SOCKAIJLAVSJLENGTH new SOCKAI structures are created

and added to the LAVS.
The sockai_num_avail counter is assigned a new value.

Comments Verify that memory requested is actually allocated before
continuing. Exit on error after displaying an error message.

Function prototype SOCKAI *SOCKAI_lavs_get();
Description Gets a SOCKAI structure from the LAVS.
Input void
Return Pointer to a usable SOCKAI structure or NULL if the LAVS is

empty.
Constraints None
Pseudo code If sockai_num_avail > 0

Decrement sockai_num_avail
Set a temp pointer to an available structure
Set the pointer in the LAVS to NULL
Return the temp pointer

Else return NULL
Calls None
Effects Removes a SOCKAI structure from the LAVS.

Decrements the sockai_num_avail counter.

77

Function prototype int SOCKAI_lavs_put(SOCKAI *addr);
Description Adds a SOCKAI structure to the LAVS. If the LAVS is already

full then no action is taken on the SOCKAI.
Input addr - the socket address structure to be added to the LAVS
Return Integer denoting success; TRUE = success, FALSE = full LAVS
Constraints None
Pseudo code If sockai_num_avail = SOCKAIJLAVSJLENGTH

Return FALSE
Else

If addr not equal to NULL
Set the pointer for an open slot in the LAVS to the given

SOCKAI structure
Increment counter sockai_num_avail

Return TRUE
Calls None
Effects Adds a SOCKAI structure to the LAVS.

Increments the sockai_num_avail counter. |

Socket Address functions

The socket address module creates and deletes socket address structures via the
following functions:

Function prototype SOCKAI *new_sockaddr(const char *dotted, const u_int port);
Description Creates a new sockaddr_in structure with the given IP address

and port number.
Input dotted - dotted notation IP address

port - port number
Return A pointer to the dynamically allocated address structure
Constraints Limited to IPv4 addresses.
Pseudo code Call SOCKAI_lavs_get()

If a structure is returned, then use it
Else call malloc() to allocate memory for a SOCKAI structure
Set the family field to AFJNET
Call conv_pton() to convert the dotted address to a numerical

address in network byte order
Assign the numerical address to the structure's address value
Call htons() to convert the port number to network byte order
Assign the port number to the structure's port number
Return a pointer to the structure

Calls SOCKAI_lavs_get()
mallocO

78

conv_pton() - utility function
htons() - system call

Effects Creates a SOCKAI structure with the given parameters assigned
to its data members in network form.

Comments Verify that memory requested is actually allocated before
continuing. Also, error check the htons() call. Exit on errors after
displaying an error message.

Function prototype void del_sockaddr(SOCKAI *addr);
Description Deletes the given socket address structure.
Input addr - the socket address structure to be deleted
Return void
Constraints Limited to IPv4 addresses.
Pseudo code Call SOCKAI_lavs_put() to add the structure to the LAVS

If the return value is FALSE
Call free() to deallocate the structure

Calls SOCKAI_lavs_put()
free()

Effects Adds the SOCKAI structure to the LAVS or deallocates it.

6.3 Firewall Database Module

This section defines the firewall record structure and describes its associated
operations. The firewall database module maintains a private array of firewall records. The
size of the array is determined by a constant value defined in the module's source code. The
associated functions for the database act upon the it on behalf of a caller, return values from
the database, or return handles to specific parts of the database. The controller uses a
firewall database to track firewall machines that may be part of the parallel firewall
architecture. The administrator, via either the controller's initialization file or its
administrator interface, must provide some of a record's data (i.e. the control and data net
addresses and the processing capacity of the firewall). The administrator sets the handle
field of each record when the firewall database is initialized. The administrator controls the
availability field, telling the system whether a particular record may be activated by the
system. The field also tells the system whether a record in the database is empty. The
administrator may modify or delete only disabled records. The system controls the status
field of each record. The system may activate any record that is enabled by the
administrator. Likewise, it may deactivate any record whose associated firewall machine it
deems to be malfunctioning. The appropriate value for the capacity field of a given record
should be determined by bench testing the firewall machine in its operational configuration.
Appendix C discusses bench testing procedures. The system obtains the Ethernet address of

79

a firewall's data net connection to the controller and records it in the ether field as part of
the record activation procedure. The misses field is used to determine whether a firewall
machine is malfunctioning. If the number of misses exceeds some threshold value set by
the administrator, then the system deactivates the record. The distribution field value is
assigned by the load-balancing algorithm. The scheduling procedure uses this value to
determine which firewall should mediate a new connection or should process
connectionless network traffic. The firewall record module also has a private counter,
fivdb_cnt, that tracks the number of occupied record slots in the database.

/* Firewall record */
typedef struct fwrecord {

int handle; /* used as a reference to the record from outside the database */
short avail; /* tells whether the record is available to be activated;

values are ENABLED, DISABLED, EMPTY */
short status; /* tells whether a firewall is currently active;

values are ACTIVE, INACTIVE */
SOCKAI *caddr; /* firewall's control net IPv4 address */
u_long capacity, /* firewall's processing capacity */

load; /* firewall's current load */
SOCKAI *daddr; /* firewall's data net Ipv4 address */
char ether[14]; /* data net Ethernet address of firewall */
u_short misses; /* consecutive non-responses or poor health reports */
u_long distr; /* used for statistical distribution of network traffic */

} fwrecord;

The BSD/OS Address Resolution Protocol request structure is used by the firewall database
module when obtaining Ethernet addresses for firewall data net IPv4 addresses. Its structure
is shown below:

/* ARP request; defined in <net/if_arp.h> */
struct arpreq {

struct sockaddr arp_pa; /* protocol address */
struct sockaddr arpjha; /* hardware address */
int arp_flags; /* flags */

};

The following declarations and methods define and operate on a firewall database:

#defineFWDB SIZE 10

80

fwrecord fwdb[FWDB_SlZE] = {0};
int fwdb_cnt = 0;

Function prototype void fwdb_prep_handles();
Description Initializes all records in the database with unique handle values.
Input void
Return void
Constraints None
Pseudo code Set counter to 0

Start at first database record
While counter < FWDB_SIZE

Set record's handle field to counter
Increment counter

Calls None
Effects Assigns a value to the handle field of each firewall record

Function prototype int fwdb_get_ether(int rec_hdl);
Description Uses an ARP request to obtain the Ethernet address associated

with a record's daddr field IP address. The function assumes the
record exists.

Input recjidl - handle to the firewall record of concern
Return Integer indicating success or failure in getting the Ethernet

address. TRUE for success, FALSE otherwise.
Constraints None
Pseudo code If a record referenced by the handle exists

Send ARP request to daddr field address
If Ethernet address received

Record address in ether field
Return TRUE

Else
Return FALSE

Else return FALSE
Calls Operating system calls to send the ARP request
Effects Assigns a value to the ether field of the particular firewall record

Function prototype int fwdb_insert_rec(SOCKAI *caddr, const u_long cap,
SOCKAI *daddr);

Description Writes a new firewall record into an empty slot in the firewall

81

database. The avail field determines whether a particular slot is
empty. If a record with the given control net IP address already
exists, then that record is overwritten with the new data. Old data
in the empty slot is zeroed prior to writing the new data.

Input caddr - firewall's control net IP address
cap - processing capacity of the firewall
daddr - firewall's data net IP address

Return Integer denoting success of inserting the new record. TRUE for
success, FALSE if the database is full.

Constraints Addresses must be dynamically allocated so the pointer value
may be copied into the appropriate field of the record.

Pseudo code Call fwdb_search_addr() to search the array for a matching caddr
address.

If a match exists
Call fwdb_free_rec() to clear the record
Call fwdb_new_rec() to write the new record data
Set result to TRUE

Else
Call fwdb_get_empty_slot() to search for an empty slot in the

database
If the return value is not NULL

Call fwdb_free_rec() to clear the record
Call fwdb_new_rec() to write the new data
Increment fwdb_cnt
Set result to TRUE

Else set result to FALSE
Return result

Calls fwdb_search_addr()
fwdb_free_rec()
fwdb_new_rec()
fwdb_get_empty_slot()

Effects A record is cleared of old data and overwritten with the new data
provided as parameters. fwdb_cnt is incremented if the record
was empty.

Comments Existing data in an empty database slot is cleared before writing
new data in order to deal with the dynamically allocated address
structures it contains. The decision to clear the data at overwrite
vice when a record is deleted avoids conflicts requiring mutual
exclusion measures to correct. The problem scenario occurs if
one process has a pointer to a record and is partially through its
operation on the record when the record is deleted by another
process.

82

Function prototype int fwdb_new_rec(int recjidl, SOCKAI *caddr,
const u_long cap, SOCKAI *daddr);

Description Initializes the given firewall record with the given values
Input rec_hdl - handle to firewall record to be initialized

caddr - firewall's control net IP address
cap - processing capacity of the firewall
daddr - firewall's data net IP address

Return TRUE = success, FALSE = bad record handle
Constraints Addresses must be dynamically allocated so they pointer value

may be copied into the appropriate field of the record.
Pseudo code If a record referenced by the handle exists

Set avail field to UNAVAIL
Set status field to INACTIVE
Assign the given parameters to their respective fields
Return TRUE

Else return FALSE
Calls None
Effects Writes data to various fields in a firewall record

Function prototype int fwdb_del_rec(int recjidl);
Description Makes an inactive firewall record available for overwrite by

setting the avail bit to EMPTY.
Input rec_hdl - reference to firewall record to be deleted
Return Integer indicating success. TRUE = deleted, FALSE = the record

is active so it could not be deleted.
Constraints None
Pseudo code result = FALSE

If a record referenced by the handle exists
If the record's avail field is EMPTY, set result to TRUE
Else if the status field is ACTIVE

If avail field = ENABLED then set result to FALSE
Else

Spin wait until status field is INACTIVE
Set avail field to EMPTY
Set result to TRUE

Else /* status is INACTIVE and avail is DISABLED */
Set avail field to EMPTY
Set result to TRUE

Return result

83

Calls None
Effects A record's avail field is set to EMPTY and fwdb_cnt is

decremented.
Comments The data is cleared upon overwrite rather than upon deletion.

This decision avoids conflicts requiring mutual exclusion
measures to correct. The problem scenario occurs if one process
has a pointer to a record and is partially through its operation on
the record when the record is deleted by another process. The
case where avail = DISABLED but status = ACTIVE is where the
record has been disabled by the user but the process of
terminating communications with active firewall is still in
progress. Spin waiting is acceptable here because record
deletions are expected to be infrequent events and the spin
waiting time will be short, when it occurs.

Function prototype int fwdb_search_dotted(const char *dotted, int *rec_hdl);
Description Searches the firewall database for the given dotted notation

control net IP address. Returns an integer (contents of rec_hdl) as
a reference to the record.

Input dotted - address of the firewall of interest
rec_hdl - pointer to storage location for reference to the matching

firewall record
Return TRUE = found match, FALSE = no match
Constraints Supports only IPv4 addresses
Pseudo code Call conv_pton() to convert the dotted address to a network byte

ordered numeric address
While not found and more records exist

If converted dotted address = record's caddr field address
Copy handle field of the record to contents of recjhdl
Return TRUE

Else advance to next record
Return FALSE if no match found

Calls conv_pton() - utility function
Effects None

Function prototype int fwdb_search_addr(SOCKAI *addr, int *rec_hdl);
Description Searches the firewall database for the given socket address.

Returns a reference to the matching record via recjhdl.
Input addr - address of the firewall of interest

rec_hdl - pointer to storage location for a reference to the

84

matching record
Return TRUE = match found, FALSE = no match
Constraints Supports only IPv4 addresses
Pseudo code While not found and more records exist

If the given address = the record's caddr field address
Copy handle field of the record to contents of recjidl
Return TRUE

Else advance to next record
Return FALSE if no match found

Calls None
Effects None

Function prototype void fwdb_free_rec(int rec_hdl);
Description Clears the data in the given record
Input rec hdl - reference to firewall record to be cleared
Return void
Constraints None
Pseudo code If a record referenced by the handle exists

Call del_sockaddr() to delete the address structures in the record
Call bzero() to zero all bytes in the firewall record structure

Calls del_sockaddr() - socket address function
bzero() - system call

Effects Overwrites all data in a firewall record with zeros

Function prototype void fwdb_view();
Description Displays the contents of the firewall database
Input void
Return void
Constraints None
Pseudo code For each non-EMPTY record in the array

Display handle,
avail,
status,
control net address,
data net address,
capacity,
load

Calls None
Effects None

85

Function prototype int fwdb_chg_addr_cap(int recjidl, SOCKAI *caddr,
SOCKAI *daddr, u_int *cap);

Description Change the control address, data address, or capacity of a firewall
record. Values not intended to be changed should be given a
NULL value for the parameter. Active records may not be
changed.

Input recjidl - reference to firewall record to change
caddr - control net address
daddr - data net address
cap - processing capacity

Return TRUE = success, FALSE = active record or bad reference
Constraints The address structures must be dynamically allocated so that the

pointers may be copied directly into the record. Active records
may not be changed.

Pseudo code Find record referenced by record handle
If a record referenced by the handle does not exist, return FALSE
If the status field is ACTIVE

If avail field = ENABLED then set result to FALSE
Else

Spin wait until status field is INACTIVE
For each non-NULL parameter

If the parameters is an address
Call del_sockaddr() to delete the existing address structure

Change the appropriate field in given record to that value
Set result to TRUE

Else /* status is INACTIVE and avail is DISABLED */
For each non-NULL parameter

If the parameters is an address
Call del_sockaddr() to delete the existing address structure

Change the appropriate field in the given record to that value
Set result to TRUE

Return result
Calls del_sockaddr() - socket address function
Effects Overwrites the appropriate fields with given values
Comments Spin waiting is acceptable here because record changes are

expected to be relatively infrequent events and the spin waiting
time will be short, when it occurs.

Function prototype int fwdb_get_empty_slot(int *rec_hdl);
Description Gets a reference to an empty slot in the firewall database.

86

Returns the reference via rec hdl.
Input recjidl - pointer to storage location for reference to empty record
Return TRUE = success, FALSE = database is full
Constraints None
Pseudo code result = FALSE

If fwdb_cnt < FWDB_SIZE
Start at first element of database
While more records exist and result is FALSE

If avail field = EMPTY
Copy handle field of the record to contents of rec_hdl
result = TRUE
Break from while loop

Else advance to next element of database
Return result

Calls None
Effects None

Function prototype int fwdb_incr_misses(int recjidl);
Description Increments the miss count for the given firewall record and

returns the resultant count. The function will not roll over the
value of misses. That is, when the value of the misses field gets
to the maximum int value, it stops incrementing.

Input recjidl - reference to firewall record for which to increment the
miss count

Return The revised miss count or -1 for a bad reference
Constraints None
Pseudo code Find record referenced by record handle

If a record referenced by the handle does not exist, return -1
If misses < max integer value

Increment miss count for record
Return miss count

Calls None
Effects Adds 1 to the value of the miss field for one record up to limit of

the maximum integer value.

Function prototype int fwdb_reset_misses(int recjidl);
Description Reset the miss count for the referenced firewall record
Input Reference to firewall record for which to reset misses
Return TRUE = success, FALSE = bad reference
Constraints None

87

Pseudo code Find record referenced by record handle
If a record referenced by the handle does not exist, return FALSE
Set misses field to 0 for record
Return TRUE

Calls None
Effects Sets misses field to zero for one record

Function prototype int fwdb_disable_rec(int recjidl);
Description Disable a firewall record so that it may not be activated by the

system
Input Reference to firewall record to be disabled
Return TRUE = success, FALSE = bad reference
Constraints None
Pseudo code Find record referenced by record handle

If a record referenced by the handle does not exist, return FALSE
Set avail field to DISABLED for record
Return TRUE

Calls None
Effects Sets the avail field to DISABLED for one firewall record

Function prototype int fwdb_enable_rec(int rec_hdl);
Description Enable a firewall record so that it may be activated by the system
Input Reference to firewall record to be enabled
Return TRUE = success, FALSE = bad reference
Constraints None
Pseudo code Find record referenced by record handle

If a record referenced by the handle does not exist, return FALSE
Set avail field to ENABLED for record
Return TRUE

Calls None
Effects Sets the avail field to ENABLED for one firewall record

Function prototype int fwdb_deactivate_rec(int rec_hdl);
Description Deactivate the referenced firewall record
Input Reference to firewall record to be deactivated
Return TRUE = success, FALSE = bad reference
Constraints None
Pseudo code Find record referenced by record handle

If a record referenced by the handle does not exist, return FALSE

88

Set status field to INACTIVE for record
Return TRUE

Calls None
Effects Sets the status field to INACTIVE for one firewall record

Function prototype int fwdb_activate_rec(int recjidl);
Description Activate the referenced firewall record
Input Reference to firewall record to be activated
Return TRUE = success, FALSe = bad reference
Constraints None
Pseudo code Find record referenced by record handle

If a record referenced by the handle does not exist, return FALSE
Set misses field to 0
Set load field to 0
Set distrib field to 0
Set status field to ACTIVE
Return TRUE

Calls None
Effects Sets operational field values to 0 then sets the status field to

ACTIVE for one firewall record

Function prototype int fwdb_set_load(int rec_hdl, const u_int val);
Description Set the load field for the referenced firewall record to the given

value
Input rec_hdl - reference to firewall record to be changed

val - value to be set for load
Return TRUE = success, FALSE = bad reference
Constraints None
Pseudo code Find record referenced by record handle

If a record referenced by the handle does not exist, return FALSE
Set record's load field to val
Return TRUE

Calls None
Effects Assigns a value to the load field for one firewall record

Function prototype const char *fwdb_distr_select(const int val);
Description Searches the firewall database for the record responsible for the

given distribution value.
Input val - distribution value of interest

89

Return The Ethernet address of the record responsible for the given
distribution value. If the database has no active records, then the
empty string is returned.

Constraints Assumes that the distr field values of active records in the array
increase from first to last record.

Pseudo code result = empty string
result = ether field of the first active record in the array
If result is not the empty string

Start at first active record in array
While distr field of the record is < val and more records exist

Go to next active record
If not past the end of the database, then result = ether field of

the current record
Return result

Calls None
Effects None

Function prototype short fwdb_LBalg(const short prevjium);
Description Calculates the statistical distribution coefficients used to

determine where a new connection should be routed.
Input prev_num - the number of firewalls in the load-balancing scheme

the last time the algorithm was run
Return Number of firewalls in the current load-balancing scheme
Constraints None
Pseudo code count = 0

For each enabled, active record in the firewall database
Copy the capacity and load fields
Increment count

Calculate the total capacity, captot, of all active firewalls
Calculate the total load, Lt0t> of all active firewalls
For each active record x

mx = capx/captot
If count equals prevjnum

LFx(t) = L x(t) / Ltot // this is the load factor for x
kx(t) = LFx(t) - mx // this is the correction factor for x
dfx(t+l) = dfx(t) - r * kx(t) // this is the corrected distribution

// factor for x with a relaxation
// factor, r, included

Else dfx(t+l) = mx

Set distr of first active record copied equal to dfi(t+l)
For each active record copied, starting at second one,

90

Set distr to distr of previous active record + dfx(t+l)
Return count

Calls None
Effects Writes a new value to the distr field of each active record

6.4 Load Table Module

This section defines load element and load record structures and their associated
operations. The load monitor on each firewall machine uses these structures to map load to
TCP connections. The load record structure consists of an average and number of load
samples taken for a particular TCP connection, identified by its source and destination
socket addresses. The load record structure is designed to be a node in a linked list. A
linked list data structure is used for a load table since the number of TCP connections can
vary greatly and insertions/deletions of nodes will be frequent.

/* Load element */
struct ld_element {

u_int avg,
samples;

};

/* average of samples taken */
/* number of samples */

/* Load record */
typedef struct ld_rec {

char *source,
*dest;

struct ld_element load;
struct ld_tbl *prev;
struct ld_tbl *next;

} ld_rec;

/* source address */
/* destination address */

Load Table LAVS

The load table module maintains a private LAVS for load record structures. The
LAVS is implemented as a singly linked list using the prev and next pointers in the load
record structure. The LAVS is initialized by calling function lt_lavs_prep(). This function
should be included in the header file. The initial length of the LAVS is determined by a
constant in the module's source file. The following declarations and methods create and
operate on the load table LAVS:

#defmeLT LAVS INITLENGTH 50

91

ld_tbl *lt_lavs_head = NULL; /* Pointer to head of LAVS */
ld_tbl *lt_lavs_tail = NULL; /* Pointer to tail of LAVS */

Function prototype void lt_lavs_prep();
Description Creates LT_LAVS_INITLENGTH ld_rec structures and adds

them to the LAVS.
Input void
Return void
Constraints None
Pseudo code For count = 0 to LTJLAVSJNTTLENGTH - 1

Call malloc() to allocate memory for a new ld_rec structure
Call lt_lavs_put() to add the new structure to the LAVS

Calls malloc()
lt_lavs_put()

Effects Increases the LAVS length by LT.LAVS.INTTLENGTH nodes
Comments Verify that memory requested is actually allocated before

continuing. Exit on error after displaying an error message.

Function prototype void lt_lavs_put(ld_rec *node);
Description Appends the given ld_rec stucture to the tail of the LAVS
Input node - Id rec structure to be added to the LAVS
Return void
Constraints None
Pseudo code Set prev and next pointers for node to NULL

Iflt_lavs_tailisNULL
Set lt_lavs_tail to node
Set lt_lavs_head to node

Else
Set next pointer for lt_lavs_tail to node
Set It lavs tail to node

Calls None
Effects Adds one ldjrec node to the LAVS

Function prototype void lt_lavs_putlist(ld_rec *ptr);
Description Appends the given record list to the tail of the LAVS
Input ptr - pointer to head of list of load records to be added to the

LAVS
Return void
Constraints None

92

Pseudo code Iflt_lavs_tailisNULL
Set lt_lavs_head to node
Set lt_lavs_tail to tail of the list being added to the LAVS

Else
Set next pointer for lt_lavs_tail to ptr
Set ltjavsjail to tail of list being added to the LAVS

Calls None
Effects Adds a list of load records to the LAVS

Function prototype ld_rec *lt_lavs_get();
Description Gets a ld_rec structure from the head of the LAVS.
Input void
Return Pointer to usable ld_rec structure or NULL if the LAVS is empty
Constraints None
Pseudo code If lt_lavs_head is NULL

Return NULL
Else if lt_lavs_head equals ltjavsjail

Set a temp pointer to lt_lavs_head
Set ltjavsjiead to NULL
Set lt_lavs_tail to NULL
Return temp pointer

Else
Set a temp pointer to lt_lavs_head
Set lt_lavs_head to lt_lavs_head next pointer
Return temp pointer

Calls None
Effects Removes one Id rec node from the LAVS

Load Table functions

The load table module maintains a private doubly linked list of load record nodes as
a load table. The following declarations and methods operate on the load table for client
programs:

ld_rec *ld_table = NULL;

Function prototype u_long lt_update_table();
Description Update the load table with a load sample from the system
Input void

93

Return The total queue length of connectionless traffic in bytes
Constraints Treats all non-TCP traffic as connectionless
Pseudo code Call netstat() to get a load sample for network connections

Sort the output of netstat using merge sort (O(nlogn)) or a O(l)
sort function so that entries are in ascending order by source
socket address
For each socket entry in netstat output

If the socket addresses do not match the next table entry
If the table entry's socket was closed

Call lt_del_rec() to delete the entry
Else

Call lt_new_ld_rec() to create a new ld_rec structure
Call lt_insert_rec() to insert the new socket into the table

Else update the load record as follows
old_total = samples * avg;
samples = samples + 1;
avg = (old_total + new sample queue length) / samples;

Calls netstat() - system function call
lt_new_rec()
lt_insert_rec()
lt_del_rec()

Effects Each record in the load table is updated with a new load sample
or deleted, and new records may be added to the table

Function prototype ld_rec *lt_new_rec(const char *src, const char *dest,
u_int Idval);

Description Generates a new load record structure with the given parameters.
All other parameters are set to 0.

Input scr - source address
dest - destination address
ldval - value of load for the new record

Return Pointer to the new load record structure
Constraints The source and destination addresses must be dynamically

allocated so they can be used directly in the record.
Pseudo code Call lt_lavs_get() to get a record from the LAVS

If the return value is non-NULL, then set result pointer to it
Else

Call malloc() to allocate memory for a new load record
Set result pointer to new record

Call free() to deallocate the source and dest addresses
Call bzero() to clear the record

94

Assign the given parameters to the appropriate fields
Return result pointer

Calls lt_lavs_get()
mallocO
bzero() - system call
fireeO

Effects None
Comments Verify that memory requested is actually allocated before

continuing. Exit on error after displaying an error message.

Function prototype void lt_insert_rec(ld_rec *marker, ld_rec *node);
Description Inserts a load record into the load table just before the marker.
Input marker - load record position before which to add the new node

node - load record to be added to table
Return void
Constraints The pointer manipulation must be implemented such that no

problems exist with another process iterating through the list
head-to-tail during the insertion.

Pseudo code If the load table is empty, then set the table pointer to node
Else manipulate prev and next pointers to insert node into list

Calls None
Effects Inserts a new load record into the load table
Comments Verify pointers are non-NULL

Function prototype void lt_del_rec(ld_rec *node);
Description Deletes the given load record from the load table
Input node - load record to be deleted from table
Return void
Constraints The pointer manipulation must be implemented such that no

problems exist with another process iterating through the list
head-to-tail during the deletion.

Pseudo code If the load table is empty or node is null, then return
Manipulate prev and next pointers to extract node from table
Call lt_lavs_put() to add the record to the LAVS

Calls lt_lavs_put()
Effects Deletes a record from the load table and adds it to the LAVS

Function prototype u_long lt_calc_conn_load();
Description Calculates total load for the load table and clears the table in

95

preparation for the next iteration of sampling.
Input void
Return Total load in table
Constraints None
Pseudo code Total = 0

For each record in load table
Add load to total

Call lt_lavs_putlist() to clear the load table of records
Return total

Calls lt_lavs_putlist()
Effects Empties the load table of records

6.5 Route Table Module

This section describes the routing table entry structure. The routing process in the
controller uses this structure to track existing TCP connections through the firewall
architecture. Each entry consists of the source and destination socket addresses and the
Ethernet address of the firewall machine mediating that connection. The routing table used
by the routing process is a hash table. The route entries are data elements in the hash table.

/* Routing table entry */
typedef struct rt_entry {

SOCKAI *source,
*dest;

charether[14];
} rt_entry;

/* source socket address */
/* destination socket address */
/* Ethernet addr of firewall handling conn */

Route Table LAVS

The route table module maintains a LAVS that is implemented as an array of
rt_entry pointers. The array length is set in the source file by a constant. The counter
rt_num_avail tracks the number of rt_entry structures that are available in the LAVS at any
given time. The following declarations and methods create and operate on the LAVS. The
rt_lavs_prep() function should be listed in the route table module's header file so that the
LAVS can be populated at program startup. The get() and put() LAVS functions should be
found only in the module's source file.

#defineRT LAVS_LENGTH 100

rt_entry *rt_lavs[RT_LAVS_LENGTH] = {0};
int rt_num_avail = 0;

96

Function prototype void rt_lavs_prep();
Description Populates the LAVS by creating rt_entry structures for every

element of the LAVS
Input void
Return void
Constraints None
Pseudo code For each element in the LAVS array

Call mallocO to create a new rt_entry structure
Assign the element's pointer to the structure

Set sockai_num_avail = RT_LAVS_LENGTH
Calls mallocO
Effects RT_LAVS_LENGTH new rt_entry structures are created and

added to the LAVS.
The rt_num_avail counter is assigned a new value.

Comments Verify that memory requested is actually allocated before
continuing. Exit on error after displaying an error message.

Function prototype rt_entry *rt_lavs_get();
Description Gets a rt_entry structure from the LAVS. If the LAVS is empty,

then a NULL pointer is returned.
Input void
Return Pointer to a usable rt_entry structure or NULL if the LAVS is

empty.
Constraints None
Pseudo code If rt_num_avail > 0

Decrement rt_num_avail
Set a temp pointer to an available structure
Set the pointer in the LAVS to NULL
Return the temp pointer ,

Else return NULL
Calls None
Effects Removes a rt_entry structure from the LAVS.

Decrements the rt_num_avail counter.

Function prototype int rt_lavs_put(rt_entry *addr);
Description Adds a rt_entry structure to the LAVS. If the LAVS is already

full then no action is taken on the rt_entry.
Input addr - the socket address structure to be added to the LAVS

97

Return Integer denoting success; TRUE = success, FALSE = full LAVS
Constraints None
Pseudo code If rt_num_avail = RT_LAVS_LENGTH

Return FALSE
Else

Set the pointer for an open slot in the LAVS to the given
rt_entry structure

Increment counter rt_num_avail
Return TRUE

Calls None
Effects Adds a rt_entry structure to the LAVS.

Increments the rt_num_avail counter.

Route Table functions

The route table module creates and deletes rt_entry structures via the following
functions:

Function prototype rt_entry *rt_new_entry(SOCKAI *src, SOCKAI *dest,
char *ether);

Description Creates a new route entry or uses one from a LAVS. Assigns the
given parameters to the route entry.

Input src - pointer to source address
dest - pointer to destination address
ether - Ethernet address of recipient firewall

Return Route entry with given parameters
Constraints Assumes the address structures have been dynamically allocated

for use in the route entry.
Pseudo code

*

Call rt_lavs_get() to obtain a rt_entry structure from the LAVS
If the result is non_NULL
Call del_sockaddr() to delete existing socket address structures

in the rt_entry structure
Else

Call mallocO to allocate memory for a rt_entry structure
Assign the given parameter values
Return pointer to structure

Calls rt_lavs_get()
mallocO
del_sockaddr() - socket address function

Effects Generates a new rt_entry structure for use
Comments Verify that memory requested is actually allocated before

continuing. Exit on error after displaying an error message.

98

Function prototype void it del route(rt entry *tgt);
Description Deletes a route entry structure
Input Route entry to delete
Return void
Constraints None
Pseudo code If tgt = NULL, then return

Call rt_lavs_put() to place the rt_entry strucutre in the LAVS
If the result was FALSE

Call del_sockaddr() to delete the socket address structures in the
rt_entry structure

Call call free() to deallocate the rt_entry structure
Calls rt_lavs_put()

free()
del_sockaddr() - socket address function

Effects Deletes a rt_entry structure from use

Routing Table data structure

As mentioned earlier, the routing table is an instantiation of a hash table. A pre-
existing hash table package [Ref 4] is used for the routing table. The size of the hash table
is determined by a constant in the route table module source file. The hash table module
defines the following data types:

typedef struct bucket {
char *key;
void *data;
struct bucket *next;

} bucket;

typedef struct hashjable {
u_int size;
bucket **table;

} hashjable;

The following declaratioins and methods create and operate on the routing table:

#defme RT_SLZE 10000

hashjable *rt_table;

99

Function prototype void rt_table_prep();
Description Constructs the routing table
Input void
Return void
Constraints None
Pseudo code Call construct_table(rt_table, RT_SIZE) to create the table

If the return value is NULL
Display an error message to the screen
Exit

Calls construct_table() - hash table function
Effects Generates the hash table to be used as the routing table

Function prototype char *rt_genkey(SOCKAI *src, SOCKAI *dest);
Description Generates a key from a socket address for use in the routing table
Input src - the source socket address

dest - the destination socket address
Return A string that is the key
Constraints The return value must be dynamically allocated
Pseudo code Call malloc() to allocated memory for the key

Call inet_ntop() to convert the src and dest IP addresses to strings
Assign converted src address to key
Convert src and dest port numbers to strings
Call strcat() to add the src port number, dest address, and dest

port to the end of the key value
Return key

Calls construct_table() - hash table function
mallocO

Effects Generates the hash table to be used as the routing table
Comments Verify that memory requested is actually allocated before

continuing. Exit on error after displaying an error message.

Function prototype void rt_addroute(rt_entry *newrt);
Description Adds a route to the routing table
Input newrt - the route to be added to the table
Return void
Constraints The rt_entry structure must be dynamically allocated for use in

the table.
Pseudo code If newrt is not NULL

Call rt_genkey() with the source address to generate a key

100

Call insert(key, newrt, rt_table) to insert the route into the table
Calls rt_genkey()

insertO - hash table function
Effects Adds an entry to the routing table

Function prototype rt_entry *rt_lookup(SOCKAI *src, SOCKAI *dest);
Description Looks up a route entry in the routing table
Input src - the source socket address

dest - the destination socket address
Return Pointer to the route entry found or NULL if no match found
Constraints None
Pseudo code Call rt_genkey() to generate the key for lookup

Call lookup(key, rt_table) to look up the key
Return result of lookup()

Calls rt_genkey()
lookupO - hash table function

Effects None

Function prototype void rt_table_delrt(SOCKAI *src, SOCKAI *dest);
Description Deletes a route entry from the routing table
Input src - the source socket address

dest - the destination socket address
Return void
Constraints None
Pseudo code Call rt_genkey() to generate the key

Call del(key, rt_table) to delete the entry in the hash table and
return the rt_entry structure that was its data

Call rt_del_route(route) to delete the rt_entry structure
Calls rt_genkey()

del() - hash table function
rt_del_route()

Effects Deletes an entry from the routing table and deletes the rt_entry

6.6 Controller Administrative Process

The controller has administrative, update server, and routing processes. This section
describes functions and modules that make up the administrative process. The
administrative process (ADMIN) starts upon execution of file control. It provides the
program's administrator interface and spawns the controller's operational processes (i.e. the

101

update server and routing processes). ADMIN reads operational parameters and firewall
information from an initialization file. It uses the firewall data to generate firewall records
in the firewall database. It shares this firewall database and the operational parameters with
all of its child processes. As shown in Figure 2, ADMIN consists of control logic,
operational functions, and database support modules. The control logic module consists of
functions main(), init_ctrl(), view_params(), and change_param(). The operations module
consists of functions start_ctrl(), stop_ctrl(), add_fw(), and change_fwt(). The support
modules were explained previously.

ADMIN records the process id of each of its children and records the operational
state (i.e. operating or not) of the controller in local variables. It uses the process id values
to halt operation of the controller. ADMIN halts operational of the controller on three
occasions: 1) the administrator selects stop controller operation, 2) the administrator selects
exit from the administrative menu, and 3) one of the child processes terminates due to an
error. The child processes created by ADMIN are expected never to return until ADMIN
signals them to terminate so a child process terminating for any reason other than items one
or two above means it terminated due to an error. ADMIN receives a SIGCHLD signal
from the operating system when a child process terminates. The state variable prevents
more than one instance of the operational processes from existing at any given time.

Function prototype int main();
Description This is the ADMIN process. Choices in the user interface are

menu driven. Selecting stop or exit causes ADMIN to kill its
child processes. Selecting deactivate firewall record causes
ADMIN to signal the update server to run the load-balancing
algorithm.

Input void
Return Integer telling the operating sytem the exit status of the program.
Constraints None
Pseudo code Call init_ctrl() to initialize the program by reading from init file

While exit not chosen
Display menu - menu contains options to start/stop controller,

view/add/delete/modify/enable/disable firewall records,
view/modify operation parameters, and exit

Perform selected option
If SIGCHILD signal received

Signal children to terminate
Display an alert message
Set state = NOT OPERATING

Calls init_ctrl()
start_ctrl()
stop_ctrl()

102

view_params()
change_param()
fwdb_view() - fwrecord library
change_fwt()

IPC This is a list of IPC for the ADMIN process:
Signals update server that a firewall record has been disabled by
the administrator.
Signals both the update server and LBrouter to exit when stop
controller operation or exit program is selected by administrator,
or one of the child processes terminates.

Function prototype void init_ctrl(char *ifile, u_int *pollptr, u_int *failptr,
float *relaxptr, SOCKAI *uaddr);

Description Reads the controller's initialization file, building the firewall
record array and setting the operational parameters

Input ifile - the initialization file's name
pollptr - pointer to storage location for polling increment in

seconds
failptr - pointer to storage location for count to failure. This is

the number of consecutive load update polls for which
either a non-response or poor health report is received
before the controller deactivates a firewall record

relaxptr - pointer to storage location for relaxation factor used in
the load-balancing algorithm

uaddr - update socket address for controller
Return void
Constraints None
Pseudo code Call Fopen() to open the initialization file

Read update address for controller's control net listening socket
Read polling increment from file
Read fail count from file
Read relaxation factor from file
While firewall info continues and space exists in firewall table

Read firewall record information and add to firewall table
Calls Fopen() - utlity library

new_sockaddr() - socket address library
fwdb_insert_rec() - fwrecord library

Comments Error checking of input file format and values read must be
included. Detected errors should cause the program to exit.

103

Function prototype void start_ctrl(int *state, u_int *pollptr, u_int *failptr,
float *relaxptr);

Description Starts controller operation - spawns UPDATE SERVER and LB
ROUTER processes

Input state - pointer to the operational state variable
pollptr - pointer to poll increment
failptr - pointer to fail count
relaxptr - pointer to the relaxation factor
The parent (ADMIN) has all of the variables so the children need

pointers to them.
Return void
Constraints Should not be able to start up more than one instance of the child

processes.
Pseudo code If state variable = NOT OPERATING

Spawn update server process
Spawn routing process
Set state variable = OPERATING

Calls update_server()
LBrouterQ

Function prototype void stop_ctrl(int *state, pid_t udserver, pid_t lbrouter);
Description Stops controller operation - signals UPDATE SERVER and LB

ROUTER processes to exit
Input state - pointer to the state variable

udserver - PID of UPDATE SERVER process
lbrouter - PID of LBROUTER process

Return void
Constraints None
Pseudo code If state variable = OPERATING

Signal update server process to terminate using SIGUSR1
Signal routing process to terminate using SIGUSR1
Set state variable = NOT OPERATING
Display message saying controller operation stopped

Else display message saying controller not operating
Calls None

Function prototype void view_params(const SOCKAI *ctrl, const u_int poll,
const u_int fail, const float relax);

Description View the controller's operational parameters
Input Ctrl - pointer to controller's control net address

104

poll - polling increment in seconds
fail - number of consecutive non-responses or poor health reports

required before controller deactivates a firewall record
relax - relaxation factor used by load-balancing algorithm

Return void
Constraints None
Pseudo code Display each parameter to screen
Calls None

Function prototype void change_param(SOCKAI *ctrl, u_int *poll, u_int *fail,
float *relax);

Description Allows the user to change the controller's operational parameters
Input ctrl - pointer to controller's control net address

poll - pointer to polling increment
fail - pointer to fail count
relax - pointer to relaxation factor

Return void
Constraints None
Pseudo code While exit not selected

Call view_params() to display parameters
Prompt user for parameter to change
If exit option selected, then return
Prompt for values
Change parameters

Calls view_params()

Function prototype void change_fwt(int *state);
Description Change the contents of the firewall table
Input void
Return void
Constraints None
Pseudo code While exit not selected

Call fwdb_view()
Display numerical codes for changing fields, adding/deleting

records, enabling/disabling records, and exiting menu
Prompt for a selection code *
If code is for exit, then return
If code is for add record

Call add_fw()
Else

105

Prompt for record number
If code is for delete

If fwdb_del_rec() yields FALSE, then tell user that the
record must be disabled before delete

Else if code is for enable
Call fwdb_enable_rec()

Else if code is for disable
Call fwdb_disable_rec()
If contents of state = OPERATING

Signal UPDATE SERVER using SIGUSER2 that a record
has been disabled

Else if code is for modify record
Get field code
Get new value
Call fwdb_change_addr_cap()

Else display bad input message
Calls add_fw()

fwdb_view()
fwdb_change_addr_cap()
fwdb_enable_rec()
fwdb_disable_rec()
fwdb_del_rec()

Comments Include error checking on field codes and values entered.

Function prototype void add_fw();
Description Prompts for control net and data net addresses and capacity of a

new firewall. Adds a new record to the given firewall array.
Input void
Return void
Constraints None
Pseudo code If fwdb_get_empty_slot() yields TRUE

Prompt for control address
Prompt for data address
Prompt for capacity
Call new_sockaddr() to generate control and data net address

structures
Call fwdb_insert_rec() to add record to firewall database

Else display message saying database is full
Calls fwdb_get_empty_slot()

new_sockaddr() - socket address library
fwdb_insert_rec()

106

6.7 Controller Update Server Process

The update server process (UPDATE SERVER) listens on the control net for
firewalls to announce themselves as ready to process network traffic. When a new
connection is received on the listening port, UPDATE SERVER spawns a duplicate of itself
as a child process to handle the new connection. If the new connection passes the tests
described in Chapter 3 of Reference 1, then the child process polls the firewall for periodic
load updates. The parent UPDATE SERVER continues listening for connections and
coordinates both polling of the firewalls and calling the load-balancing algorithm. Figure 2
shows the UPDATE SERVER as having control logic, communications logic, and database
support modules. The control logic consists of functions update_server(), processmsg(),
and get_load(). The communications logic consists of calls to wrapper functions from the
utility library for UNIX socket communication function calls. The other modules are
support modules described earlier.

UPDATE SERVER maintains a process id array the size of the firewall database
(FWDB_SIZE). As it spawns child processes to handle new connections, it records the
child's process in the array slot corresponding to the handle number of the firewall record
the child is updating. This PID array serves two purposes: it allows the parent UPDATE
SERVER to relay disabled record signals from ADMIN to the child UPDATE SERVERS
and it allows the parent to verify that the associated firewall record is deactivated when one
of its children terminates. The verification item protects against a child UPDATE SERVER
terminating due to an error without deactivating its firewall record.

Function prototype void update_server(u_int *pollptr, u_int *failptr, float *relaxptr);
Description Starts the UPDATE SERVER. The update server listens for

firewall machines to announce themselves on the control net. It
spawns a child for each firewall. The children periodically poll
the firewalls for load updates. The parent coordinates polls for
load updates and calls the load-balancing algorithm as
appropriate.

Input pollptr - pointer to poll increment
failptr - pointer to fail count
relaxptr - pointer to relaxation factor

Return void
Constraints None
Pseudo code Call Socket(), Bind(), and Listen() to open a listening socket on

the control net
Call Accept() to accept new connections
When new connection received

Spawn a child to handle connection
Child calls fwdb_search_addr() to verify the message is from

107

a recognized firewall (i.e. it is in an enabled record in the
firewall table)

If result is non-NULL, call processmsgO
Else

Send UNKNOWN_MACH response to firewall
Close connection
Exit

If connection passes tests in processmsgO
Call fwdb_get_ether() to get data net Ethernet address of

firewall
If successful

Call fwdb_activate_rec() to activate record
Call get_load() to poll firewall with poll number when

poll signal received from parent
If firewall does not respond or gives poor health report

Call fwdb_incr_misses() to increment miss count
If miss count return value equals fail count

Call fwdb_deactivate_rec() to deactivate record
Print alert to screen
Close connectioin
Exit

Else
Call fwdb_reset_misses() to reset miss count

If disable signal (SIGUSER2) received from parent
Check avail field of the firewall record
If avail field = DISABLED

Close socket to firewall
Call fwdb_deactivate_rec()
Exit

Wait for poll signal (SIGUSER1) from parent

Parent does the following:
Continues listening for new connections
Maintains the master poll number and next poll time. Signals

children to poll (SIGUSER1) when next poll time reached
Handles disable signals (SIGUSER2) from the admin process
Signals children (SIGUSER2) when a firewall has been

disabled by the admin process (i.e. parent receives
SIGUSER2 from ADMIN)

Calls load-balancing algorithm after updates received or
firewall disabled/deactivated. Increments poll number if
LBalgO call was from a polling cycle.

Exits on receipt of SIGUSER1 from ADMIN

108

Calls

n>c

processmsgO
get_load()
Socket()
BindO
Listen()
Accept()
fwdb_LBalg()
fwdb_incr_misses()
fwdb_activate_rec()
fwdb_deactivate_rec()
fwdb_reset_misses()
fwdb_search_addr()
Receives a signal from ADMIN when the administrator disables a
firewall record.
Parent signals children to check their respective avail field when a
firewall record has been disabled by ADMEN.
Parent signals children to poll for load update

Function prototype
Description

Input

Return
Constraints
Pseudo code

void processmsg(int connfd, int recjidl, const char *dotted);
Processes an announcement message received from a firewall.
Sends a bad hello response if the hello message is not the one
expected. If the hello message passes its test, then the function
sends an ARP request for the firewall's data net Ethernet address.
If the ARP request is unsuccessful, then the function sends a bad
data net addr message to the firewall. If all checks pass, the
function sends an acknowledgement message. It displays a
message to the user notifying them of whatever happens.
connfd - socket descriptor to firewall machine
recjidl - reference to the firewall record associated with the

message received
dotted - dotted notation IPv4 address from record
void
None
Read hello message
If message is that expected

Get the data net Ethernet address of the firewall
If unsuccessful

Send bad data net addr message to firewall
Display notification to screen

Else
Acknowledge the firewall

109

Calls

Activate the record
Display notification to screen

Else
Send bad hello response
Display notification to screen
Exit

readn() - utility library
writenQ - utility library

Function prototype

Description

Input

Return

Constraints
Pseudo code

Calls

int get_load(int recjidl, int fd, const int timeout,
const int pollnum);

Poll the given socket for a load update and place the result in the
given firewall record.
recjidl - reference to firewall record for the firewall to poll
fd - open socket descriptor to the firewall
timeout - max time for firewall to respond
pollnum - index number of poll
Integer indicating whether an update was received in the given
time period; TRUE = received, FALSE = not received
None
Send poll with poll id number to firewall
Sleep until answer received or timeout period expires
If answer received

Call fwdb_set_load() to update load in firewall record
Verify poll id is correct (checks for late responses)
If poll id matches the latest one sent

Return TRUE
Else continue listening

Else return FALSE
readn() - utility library
writen() - utility library
fwdb_set_load()

6.8 Controller Load-balancing Router Process

The controller's load-balancing routing process (LBROUTER) intercepts outbound
network traffic and routes it to the appropriate firewall machine for processing. Figure 2
shows LBROUTER as having routing logic, a scheduler, and database support functions for
both the firewall database and a routing table. Function LBrouterQ is the routing logic and

110

function scheduler^) is the scheduler module. All other modules are firewall database and
routing table support modules described earlier.

Function prototype void LBrouter();
Description Starts load-balancing router execution. This function routes new

TCP connections and connectionless traffic to firewalls according
to the load-balancing scheme generated by the load-balancing
algorithm.

Input void
Return void
Constraints None
Pseudo code Use BSD Packet Filter (BPF) to intercept all outbound packets

and also those inbound packets containing reset commands
If outbound packet

If packet is for connectionless traffic
Call scheduler() to determine firewall recipient
Make a new Ethernet frame
Send packet to firewall using BPF

Else if packet is for a new TCP connection
Call scheduler() to determine firewall recipient
Call rt_addrt() to record entry in routing table
Make a new Ethernet frame
Send packet to firewall using BPF

Else
Call rt_lookup() to determine whether packet is for an existing

connection
If packet is for an existing entry in routing table

Make a new Ethernet frame
Send packet to appropriate firewall
If packet terminated the connection

Call rt_table_delrt() to delete the assoc. routing table entry
Call rt_del_route() to delete the rt_entry structure

Else drop it
If inbound packet (containing a reset command)

Call rt_table_delrt() to delete the associated routng table entry
Call rt_del_route() to delete the rt_entry structure

If signal to exit (SIGUSER1) is received from ADMIN
Exit

Calls scheduler()
new_sockaddr() - socket address library

111

rt_new_entry()
rt_addrt()
rt_lookup()
rt_table_delrt()
rt_del_route()

IPC Receives signal from ADMIN to exit.

Function prototype const char *scheduler();
Description Determines which firewall machine should get the next

connection
Input void
Return The Ethernet address of the selected firewall
Constraints None
Pseudo code Generate a random number (u_long)

Call fwdb_distr_select(random number) to determine the firewall
that has the random number in its distribution range

Return the resultant Ethernet address
Calls fwdb_distr_select()

6.9 Firewall Load Monitor Process

This section describes the modules and functions used in each firewall load monitor.
The load monitor process is started by executing file loadmon. The load monitor process on
each firewall announces itself to the controller after initialization. Upon receipt of an
acknowledgement, it starts monitoring load by periodically sampling the queue length of
each TCP connection through the firewall. It reports the results of its load sampling to the
controller when the controller polls it. The process consists of three modules: control logic,
communications logic, and database support modules for its load table. The control logic
consists of functions main(), init_lm(), and check_health(). The communications logic
consists of function announce() and wrapper functions in the utility library for UNIX system
socket communications functions. The load table support module was described earlier.

Function prototype int main()
Description Runs the load monitor's control logic. It announces the firewall

to the controller, periodically samples the firewall machine's load
and checks that the firewall process is still running, and sends
load updates to the controller when polled.

Input void
Return Integer indicating the exit status of the program

112

Constraints None
Pseudo code Call init_lm() to initialize the load monitor

Call announce() to announce firewall to controller
While TRUE

Call lt_update_table() to monitor firewall load
Call check_health() to check firewall health
Listen for update request from controller for sample period

seconds.
When poll recived

Call lt_update_table() to get latest TCP update for load table
to get and connectionless load

Call lt_calc_conn_load() to calculate TCP load
Reply to poll with health bit and sum of TCP and

connectionless load
Calls init_lm()

announce()
health_check()
lt_update_table()
lt_calc_conn_load()

Function prototype void init_lm(char *ifile, SOCKAI **uaddr, u_int *incr);
Description Initializes the LOAD MONITOR process by reading the given

initialization file.
Input ifile - name of init file

uaddr - pointer to storage location for controller's update address
on control net

incr - pointer to storage location for load sample increment in
seconds

Return void
Constraints None
Pseudo code Call FopenO to open initialization file

Read the controller's update address and the sample increment
Close init file

Calls Fopen() - utility library
new_sockaddr()

Comments Include error checking for file format and values being read

Function prototype int announce(SOCKAI *addr);
Description Sends hello message to the socket address provided.
Input Pointer to destination socket address

113

Return Socket descriptor of open socket to controller
Constraints None
Pseudo code Call Socket() to open socket to addr

Send hello message periodically until response received
If bad message or bad data net address response message received

Display alert to screen
Exit

If unknown machine message received
Display alert to screen
Continue sending hello message every ANNOUNCE

INTERVAL seconds
If acknowledgement received, return socket descriptor

Calls Socket()
readnO
writenO

Function prototype int check_health();
Description Uses BSD Packet Filter (BPF) to check that the firewall process is

sending traffic.
Input void
Return TRUE = good health, FALSE = bad health
Constraints None
Pseudo code Call BPF to listen for incoming and outgoing traffic

If incoming but no outgoing traffic seen
Check the process status to determine whether the firewall

process is able to run
If not able to run, then return FALSE
If able to run, return TRUE

Calls None

114

References

1. William Joyner, "Design of a Load-Balancing Architecture for Parallel
Firewalls," Naval Postgraduate School, Monterey, California, March 1999.

2. D. L. Parnas, "On the Criteria to be Used in Decomposing Systems into
Modules", Communications of the ACM, Vol. 15, No. 12, December 1972, pp.
1053-1058.

3. Edsger W. Dijkstra, "The Structure of "THE" - Multiprogramming System",
Communications of the ACM, Vol. 11, No. 5, May 1968, pp. 341-346.

4. Jerry Coffin, from Bob Stout's Snippet web page under the section entitled Jerry
Coffin's hash table functions, [http://www.brokersys.com/snippets], 02
November 1995.

5. W. Richard Stevens, UNIX Network Programming, 2nd edition, Vol. 1,
Networking APIs: Sockets and XTI, Prentice Hall PTR, Upper Saddle River,
NJ, 1998.

115

116

APPENDIX C. A DISCUSSION OF BENCH TESTING

An assumption of the load-balancing firewall software design is that an accurate

processing capability be determined for each firewall machine before it is included in the

architecture. The load-balancing algorithm will work only as well as the information

provided to it allows. So, a standardized testing method would be helpful. This appendix

addresses baseline processing capability measurements.

The concern with processing capability measurements in the parallel firewall

architecture is not that every firewall machine be tested before it is included in the

architecture, but rather that each machine's configuration be tested. The processor, bus

speed, amount of memory, network interface card, operating system, and firewall software

product are the types of factors that govern a particular firewall machine's processing

capability. Once a given configuration is tested, multiple machines using that configuration

may be used in the firewall architecture without further testing. One exception that requires

retest of all configurations is where the speed of the test network components was a limiting

factor in testing but have been upgraded. For example, if the test network is upgraded from

Fast Ethernet to Gigabit Ethernet, then all platform testing may need to be redone.

Traffic
generator

Data net Firewall Data net Traffic
generator machine

Control
net

Controller
simulator

Figure 1 Test network

117

Figure 1 shows the recommended test network configuration. It has endpoints that

generate network traffic destined for each other. All traffic passes through the firewall

machine configuration being tested. An accurate measurement requires that all programs

that will run in the firewall architecture must run in the test network. Thus, a machine

simulating the controller on the control network is used so that the firewall machine may

pass its load updates to the controller.

One situation that could have a major impact on the testing process is the case where

different protocols (e.g. HTTP, SMTP, FTP) have significantly different processing times in

the firewall. In this case, knowledge of the typical network traffic composition, by protocol,

of the customer site would be needed for testing. The testing would emulate the given

traffic composition.

The same test program should be used to test all machine configurations. However,

this rule may need to be applied to varying degrees. If situation of differing protocol

processing times occurs, then machine configurations for a given customer would be tested

using the same program. If no significant difference in processing time exists, then all

machines for all customer sites may be able to be tested together. While there is no one

correct answer for the content of the test program, the following recommendations should

be considered:

• Test for varying number of simultaneous TCP connections

• Test for varying sizes of data streams per connection (e.g. IK, 10K, 50K, 100K

of data)

• Send varying amounts of connectionless traffic with the TCP traffic

• Measure data rate for the firewall machine by timing end-to-end data transfer

118

LIST OF REFERENCES

1. Department of the Navy, "Information Technology Guidelines", Version 98-1.1,15
June 1998, p. 3-12.

2. Department of the Navy, "Naval Virtual Internet Functional Architecture and
Concepts of Operations," Draft for Comment (Revision7b), 11 December 1997, pp.
32-32.

3. J. Moy, OSPF Version 2, RFC 2328, The Internet Society, April 1998.

4. T. L. Casavant and J. G. Kuhl, "A Taxonomy of Scheduling in General-purpose
Distributed Computing Systems," IEEE Trans, on Soft. Eng., vol. 14, no. 2, pp. 141-
154,1988.

5. S. Manoharan, "Taxonomy for Assignment in Parallel Processor Systems," in
Proceedings. 5th Annual European Computer Conference CompEuro'91, pp. 143-
147,1991.

6. Hesham El-Rewini, Theodore G. Lewis, Hesham H. Ah, Task Scheduling in
Parallel and Distributed Systems, PTR Prentice Hall, Englewood Cliffs, NJ, 1994,
pp. 8,9,25.

7. Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal, "Load Distributing for
Locally Distributed Systems," in Computer, vol. 25, no. 12, Dec 1992, pp. 33-44.

8. Derek L. Eager, Edward D. Lazowska, and John Zahorjan, "Adaptive Load Sharing
in Homogeneous Distributed Systems," in IEEE Trans. On Soft. Eng., vol. SE-12,
no. 5, May 1986, pp. 662-675.

9. M. Stumm, "The Design and Implementation of a Decentralized Scheduling Facility
for a Workstation Cluster," Proc. Second Conf. Computer Workstations, IEEE CS
Press, Los Alamitos, CA, 1988, pp. 12-22.

10. F. Douglas and J. Ousterhout, "Transparent Process Migration: Design Alternatives
and the Sprite Implementation," Software - Practice and Experience, vol. 21, no. 8,
August 1991, pp. 757-785.

11. M. J. Litzkow, M. Livny, and M. W. Mutka, "Condor - A Hunter of Idle
Workstations," Proc. Eighth Int'l Conf. Distributed Computing Systems, IEEE CS
Press, Los Alamitos, CA, 1988, pp. 104-111, [http://www.cs.wisc.edu/condor].

119

12. P. Krueger and R. Chawla, "The Stealth Distributed Scheduler," Proc. 11th Int'l
Conf. Distributed Computing Systems, IEEE CS Press, Los Alamitos, CA, 1991,
pp. 336-343.

13. {Catherine M. Baumgartner and Benjamin W. Wah, "GAMMON: A Load Balancing
Strategy With Multiaccess Networks," IEEE Trans, on Computers, vol. 38, no. 8,
August 1989, pp. 1098-1109.

14. Debra A. Hensgen, Taylor Kidd, et al, "An Overview of MSHN: The Management
System for Heterogeneous Networks," a work in progress, 1999.

15. I. Foster, C. Kesselman, "The Globus Project: A Status Report," Proc. IPPSISPDP
'98 Heterogeneous Computing Workshop, pp. 4-18,1998,
[http://www.globus.org/documentation/paper.html].

16. David Gelernter, "Generative Communication in Linda", ACM Transactions on
Programming and Systems," Vol. 7, No. 1, Jan 1985, pp.80-112.

17. V. Sunderam, J. Dongarra, A. Geist, R. Manchek, "The PVM Concurrent
Computing System: Evolution, Experiences, Trends," Parallel Computing, Vol. 20,
No. 4, April 1994, pp. 531-547, [http://www.netlib.org/pvm3/ncwn.html].

18. "The Message Passing Interface," International Journal of Supercomputing
Applications, Vol. 8, No. 3/4, Fall/Winter 1994, [http://www.netlib.org/mpi/mpi-
repoitps].

19. D. L. Parnas, "On the Criteria to be Used in Decomposing Systems into Modules",
Communications of the ACM, Vol. 15, No. 12, December 1972, pp. 1053-1058.

20. Edsger W. Dijkstra, "The Structure of "THE" - Multiprograrnming System",
Communications of the ACM, Vol. 11, No. 5, May 1968, pp. 341-346.

21. W. Richard Stevens, UNIX Network Programming, 2nd edition, Vol. I, Networking
APIs: Sockets andXTI, Prentice Hall PTR, Upper Saddle River, NJ, 1998.

22. Carlos F. Borges, Naval Postgraduate School, Monterey, CA. Interview, 04
November 1998.

23. Roland J. Schemers HI, "lbnamed: A Load Balancing Name Server in Perl", LISA
IX, Monterey, CA, 17-22 September 1995,
[http://www.stanford.edu/~schemers/docs/lbnamed/lbnamed.html].

24. Department of the Navy, OPNAVINST 5239. IB (draft), December 1997, para. 6.

120

25. Paul Albitz and Cricket Liu, DNS and BIND, 3rd ed., O'Reilly & Associates, Inc.,
101 Morris Street, Sebastopol, CA, chapter 6.

121

122

INITIAL DISTRIBUTION LIST

No. Copies

Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. Cynthia Irvine
Computer Science Department, Code CS/Ic
Naval Postgraduate School
Monterey, CA 93943

5. Dr. Geoffrey Xie
Computer Science Department, Code CS/Xg
Naval Postgraduate School
Monterey, CA 93943

6. Mr. Joseph O'Kane
National Security Agency
Research and Development Building
R23
9800 Savage Road
Fort Meade, MD 20755-6000

123

7. CAPT Dan Galik...
Space and Naval Warfare Systems Command
PMW161
Building OT-1, Room 1024
4301 Pacific Highway
San Diego, CA 92110-3127

8. Commander, Naval Security Group Command..
Naval Security Group Headquarters
9800 Savage Road
Suite 6585
Fort Meade, MD 20755-6585
ATTN: Mr. James Shearer

9. Mr. George Bieber
Defense Information Systems Agency
Center for Information Systems Security
5113 Leesburg Pike, Suite 400
Falls Church, VA 22041-3230

10. CDR Chris Perry
N643
Presidential Tower 1
2511 South Jefferson Davis Highway
Arlington, VA 22202

11. Mr. John Mildner
Director of Technical Operations
Code 72A
SPAWAR Systems Center Charleston
P. O. Box 190022
North Charleston, SC 29419

12. Mr. Scott Ledwell
Network Systems Security Branch Head
Code J724
SPAWAR Systems Center Charleston
P. O. Box 190022
North Charleston, SC 29419-9022

124

13. LT Lee Joyner
22286 Capote Dr.
Salinas, CA 93908

125

